FINAL REVIEW Solutions

CS61A

August 11, 2021

Environment Diagrams

1. 2 Chainz
2 Chainz accidentally scrambled his chains! Now there’s just one long link that reads
“"CANHI.” Fill in each blank in the code example below so that its environment dia-
gram is the following.

—

C H A

|
[

= Link("C", Link("A", Link("N", Link("H", Link("I")))))

.rest b.rest.rest

b.rest

.rest =
.rest.rest =
.rest.rest.rest =

oo O o O
Il

= Link("C", Link("A", Link("N", Link("H", Link("I")))))
a.rest

.rest = b.rest.rest
.rest.rest.rest = b.rest
.rest = a.rest
.rest.rest = a

O Y O Y 9 T W

.rest.rest.rest = Db

CS 61A TUTORIAL 13: FINAL REVIEW Page 2

ooP

1. The DLList class is a spin off of the normal Link class we learned in class; each
DLList link has a prev attribute that keeps track of the previous link and a next
attribute that keeps track of the next link. Fill in the following methods for DLList.

(a) class DLList:
wmon
>>> 1st = DLList (6, DLList (1))
>>> lst.value
6
>>> lst.next.value
1
>>> lst.prev.value

AttributeError: 'NoneType' object has no attribute 'value
1

empty = None
def _ init_ (self, wvalue, next=empty, prev=empty) :

def _ init_ (self, value, next=empty, prev=empty) :
self.value = value
self.next = next
self.prev = prev

Page 2

CS 61A TUTORIAL 13: FINAL REVIEW Page 3
(b) def add_last (self, wvalue):

>>> 1st = DLList (6)

>>> 1lst.add_last (1)

>>> lst.value

6

>>> 1st.next.value

1

>>> lst.next.prev.value
6

pointer = self
while

= DLList ()

def add_last (self, wvalue):

pointer = self
while pointer.next != DLList.empty:
pointer = pointer.next

pointer.next = DLList (value, DLList.empty, pointer)

Page 3

CS 61A TUTORIAL 13: FINAL REVIEW

Page 4

(c) def add_first(self, value):

>>> 1st
>>> 1st.
>>> 1st.
1

>>> 1st
VA!

>>> 1st.

>>> 1st.
>>> 1st.
6
>>> 1st.
1

old _first = DLList (

= DLList ('A")
add_first (1)
value

.next .value

next.prev.value

add_first (6)
value

next .next.prev.value

if

def add_first (self, wvalue):

old _first = DLList (self.value, self.next,
self.value = value

self.next = old_first

if old_first.next != DLList.empty:

old_first.next.prev = old_first

Page 4

CS 61A TUTORIAL 13: FINAL REVIEW Page 5

Trees

1. Implement rotate, which takes in a tree and rotates the labels at each level of the
tree by one to the left destructively. This rotation should be modular (That is, the
leftmost label at a level will become the rightmost label after running rotate). You do
NOT need to rotate across different branches.

For example, given tree t on the left, rotate (t) should mutate t to give us the right.

def rotate (t):

>>> tl1 = Tree(l, [Tree(2), Tree(3, [Tree(4)]), Tree(5)])

>>> rotate (tl)

>>> t1

Tree (1, [Tree(3), Tree(5, [Tree(4)]), Tree(2)])

>>> t2 = Tree(l, [Tree (2, [Tree(3), Tree(4)]),
Tree (5, [Tree(6)])1)

>>> rotate (t2)

>>> t2

Tree(l, [Tree (5, [Tree(4), Tree(3)1),
Tree (2, [Tree(6)])1)

branch_ labels =

n = len(t.branches)

for

Page 5

CS 61A TUTORIAL 13: FINAL REVIEW Page 6

def rotate (t):
branch_labels = [b.label for b in t.branches]
n = len(t.branches)
for i in range(n):
branch = t.branches|[1]
branch.label = branch_labels[(i + 1) % n]
rotate (branch)

2. Define tree_sequence, a generator that iterates through a tree by first yielding the
root value and then yielding the values from each branch.
def tree_sequence (t):
>>> t = tree(l, [tree(2, [tree(5)]), tree(3, [tree(4)])])
>>> print (list (tree_sequence(t)))
(1, 2, 5, 3, 4]

wwan

def tree_sequence (t):
yield label (t)
for branch in branches (t):
for value in tree_sequence (branch) :
yield wvalue

Alternate solution:
def tree_sequence(t):
yield label (t)
for branch in branches (t):
yield from tree_sequence (branch)

Thinking about the solution in terms of the recursive leap of faith: assume that each
call to tree_sequence (branch) yields the values in that branch in the proper or-
der. Then all we have to do is yield each value from that branch for each branch in
order after yielding the root value.

We utilize the common strategy of performing an action on the current node’s value,
and then using tree recursion to repeat this action for each branch of the list of
branches.

In the alternate solution, yield from allows us to yield a list of values, aka the list
of all results from recursively calling t ree_sequence. This is equivalent to yielding
each element through a for loop.

Page 6

CS 61A TUTORIAL 13: FINAL REVIEW Page 7

Tree Recursion

1. Define all_sums, a generator that iterates through all the sums that can be formed
by adding the elements in 1st.
def all_sums (lst):

>>> list(all sums([]))

(0] #sum nothing
>>> list(all_sums([1l, 21))
(3, 2, 1, 0] #1. + 2, 2, 1, O

>>> list(all_sums([1l, 2, 3]1))
(6, 5, 4, 3, 3, 2, 1, 0] #repeat sums are ok! (3 and 2+1)

if len(lst) == 0:
yield O
else:
for sum _rest in all _sums (lst[1l:]):
yield sum_rest + 1st[O0]
yield sum_rest

Page 7

CS 61A TUTORIAL 13: FINAL REVIEW Page 8

2. Fillin combine_to_61, which takes in a list of positive integers and returns True if a
contiguous sublist (i.e. a sublist of adjacent elements) combine to 61. You can combine
two adjacent elements by either summing them or multiplying them together. If there
is no combination of summing and multiplying that equals 61, return False.
def combine_to_61(1lst):

wwn

>>> combine_to_61([3, 4, 5])

False # no combination will produce 61
>>> combine_to_61([2, 6, 10, 1, 31)
True # 61 = 6 = 10 + 1

>>> combine_to_61([2, 6, 3, 10, 11)
False # elements must be contiguous

def helper(lst, num_so_far):

if

return True

elif

return False

with sum = and \

helper (,)

with mul = and \

helper (p)
return with_sum or with_mul

return

Page 8

CS 61A TUTORIAL 13: FINAL REVIEW Page 9

def combine to 61 (lst):
def helper(lst, num_so_far):
if num_so_far == 61:
return True
elif not 1lst:
return False
with_sum = num_so_far + 1st[0] <= 61 and helper(lst
[1:], num_so_far + 1st[0])
with_mul = num_so_far * 1lst[0] <= 61 and helper (lst
[1:], num_so_far * 1st[0])
return with_sum or with_mul
return helper (lst, 0)

Page 9

CS 61A TUTORIAL 13: FINAL REVIEW

Page 10

Linked Lists

1. Complete the implementation of iter_1ink, which takes in a linked list and returns
a generator which will iterate over the values of the linked list in order. Your function

should support deep linked lists.

def iter_link (1lnk):
mwmww
Yield the values of a linked list in order; your
should support deep linked lists.
>>> 1stl = Link (1, Link (2, Link (3, Link (4))))
>>> list (iter_link (1lstl))
(1, 2, 3, 4]
>>> 1st2 = Link (1, Link (Link (2, Link(3)), Link (4,
>>> print (1st2)
<l <2 3> 4 5>
>>> iter_1st2 = iter_link(lst2)
>>> next (iter_1lst?2)
1
>>> next (iter_lst?2)

>>> next (iter_1lst?2)
3
>>> next (iter_1lst2)
4

if Ink is not Link.empty:

if type () is Link:

else:

function

Link (5))))

Page 10

CS 61A TUTORIAL 13: FINAL REVIEW Page 11

def iter_link (1lnk):
if Ink is not Link.empty:
if type(lnk.first) is Link:
yield from iter_link (lnk.first)
else:
yield 1lnk.first
yield from iter_link (lnk.rest)

2. Write a function combine_two, which takes in a linked list of integers 1nk and a
two-argument function fn. It returns a new linked list where every two elements of
1nk have been combined using fn.

def combine_two(lnk, £fn):
mmwn
>>> 1nkl = Link (1, Link (2, Link (3, Link(4))))
>>> combine_two (lnkl, add)
Link (3, Link (7))
>>> 1nk2 = Link (2, Link (4, Link(6)))
>>> combine_two (lnk2, mul)
Link (8, Link (6))

if

return

elif

return

combined =

return

def combine_two (lnk, £fn):
if Ink is Link.empty:
return Link.empty
elif Ink.rest is Link.empty:
return Link (lnk.first)
combined = fn(lnk.first, lnk.rest.first)
return Link (combined, combine_two (lnk.rest.rest, fn))

Page 11

CS 61A TUTORIAL 13: FINAL REVIEW Page 12

Higher-Order Functions

1. Write a function, make_digit_remover, which takes in an integer from 0-9, i. It
returns another function which takes in an integer, and removes all digits from right
to left up to and including the first occurance of i. If i does not occur in the integer,
this function returns the original number.

def make_digit_remover (i) :
>>> remove_two = make_digit_remover (2)
>>> remove_two (232018)
23
>>> remove_two (23)
0
>>> remove_two (99)
99

def remove () e

removed =

while > 0:

removed = removed // 10

if

return

return

def make_digit_remover (i) :
def remove (n) :

removed = n

while removed > O0:
digit = removed % 10
removed = removed // 10
if digit ==

return removed

return n Page 12
return remove

CS 61A TUTORIAL 13: FINAL REVIEW Page 13

2. Write a function, curry_forever, which takes in a two-argument function, £, and an
integer, arg_num. It returns another function that allows us to enter arg_num amount
of numbers into f one by one.

def curry_forever (f, arg_num, base=0):
nmmow

>>> g = curry_forever (add, 4)
>>> g (1) (2)(3)((4) # 1 + 2 + 3 + 4
10

def helper (arg_num, amt):

if arg_num ==

return

def curry_forever (f, arg_num, base=0):
def helper (arg_num, amt)

if arg_num == 0:
return amt
return lambda x: helper(arg_num - 1, f(amt, x))

return helper (arg_num, base)

Page 13

CS 61A TUTORIAL 13: FINAL REVIEW Page 14

Scheme

1. You are creating a computer from scratch. In their rawest form, computers use
0s and 1s to compose commands and data. Fill in a function that takes a list of
boolean values representing an unsigned binary number and returns its decimal
representation. Each #t in the list represents a 1 and each #f represents a 0, with
the first element in the list being the rightmost (smallest) binary digit and the last
element being the leftmost (largest) binary digit.

;Doctests

scm> (binary (list #f #t)) ; 10

2

scm> (binary (list #t #f #t #t)) ; 1101

13

scm> (binary (list #t #t #f #f #t)) ; 10011
19

scm> (binary (list #f)) ; O

0

(define (binary bin-1list)
(cond
((null?)

Page 14

CS 61A TUTORIAL 13: FINAL REVIEW Page 15

(define (binary bin-list)
(cond
((null? bin-1list)
0
)
((car bin-list)
(+ 1 (» 2 (binary (cdr bin-1list))))
)
(else
(# 2 (binary (cdr bin-list)))

Page 15

CS 61A TUTORIAL 13: FINAL REVIEW

Page 16

2. Now, write the binary to decimal function, but in tail recursive form. Note that the
expt function takes in a base and an exponent. For example, (expt 2 3) raises 2

to the third power, returning 8.

;Doctests

scm> (binary-tail (list #f #t)) ; 10

2

scm> (binary-tail (list #t #f #t #t)) ,; 1101

13

scm> (binary-tail (list #t #t #f #f #t)) ; 10011
19

scm> (binary-tail (list #f)) ; O

0

(define (binary-tail bin-1list)
(define (helper bin-1list i sum)

(cond
((null?)
)
(()
)
(else
)
)
)
(helper)

Page 16

CS 61A TUTORIAL 13: FINAL REVIEW Page 17

(define (binary-tail bin-list)
(define (helper bin-l1list i sum)
(cond

((null? bin-1list)
sum

)

((car bin-1list)
(helper

(cdr bin-1list) (+ 1 i) (+ sum (expt 2 1))

)
(else
(helper
(cdr bin-list) (+ 1 i) sum

)
(helper bin-1list 0 0)

Page 17

CS 61A TUTORIAL 13: FINAL REVIEW Page 18

3. Given the function run, write the helper function duplicate that takes in a list of
integers, 1st, and an integer n. The duplicate function takes each element of the
list and duplicates it by its value (i.e. If the first number in the list is 2, add 2 as the
next element in the list so we have a total of two 2’s in the list).

;Doctests

scm> (define 1lst (cons 1 (cons 3 (cons 2 nil))))
1st

scm> (run 1lst)

(1 33 3 2 2)

scm> (run (cons 2 (cons 2 (cons 1 nil))))

(2 2 2 2 1)

(define run

(lambda (1lst)
(duplicate 1st 0)

(define duplicate

Page 18

CS 61A TUTORIAL 13: FINAL REVIEW Page 19

(define duplicate
(lambda (1lst n)

(cond ((null? 1st) '())
((< n (car 1lst))
(cons (car 1lst) (duplicate 1lst
(+ n 1)))
)
(else

(duplicate (cdr 1lst) 0)

Tail Recursion

1. Implement s1ice, which takes in a alist 1st, a starting index i, and an ending index
j, and returns a new list containing the elements of 1st from index i to j - 1.
;Doctests
scm> (slice '(0 1 2 3 4) 1 3)

(1 2)

scm> (slice '(0 1 2 3 4) 3 5)
(3 4)

scm> (slice '"(0 1 2 3 4) 3 1)
()

(define (slice 1lst i Jj)

)

(define (slice 1lst i 7j)

(cond ((or (null? 1st) (>= 1 7j)) nil)
((= 1 0) (cons (car 1lst) (slice (cdr 1lst) i (-
i 1))))
(else (slice (cdr 1st) (= 1 1) (= 7 1)))))

Page 19

CS 61A TUTORIAL 13: FINAL REVIEW Page 20

2. Now implement slice with the same specifications, but make you implementation tail
recursive.
You may wish to use the built-in append function, which takes in two lists and returns
a new list containing the elements of the two lists concatenated together.
(define (slice 1lst i Jj)

)

(define (slice 1st i 73)
(define (slice-tail 1st i j lst-so-far)

(cond ((or (null? 1lst) (>= i J)) lst-so-far)
((= 1 0) (slice-tail (cdr 1st) i (= 3 1) (
append lst-so-far (list (car 1st)))))
(else (slice-tail (cdr 1lst) (= 1 1) (= 3 1) 1lst
-so—far))))

(slice-tail 1st i j nil))

Alternate Solution:
(define (slice 1lst i Jj)
(define (slice-tail 1lst index lst-so-far)
(cond ((or (null? 1lst) (= index j)) lst-so-far)

((<= 1 index) (slice-tail (cdr 1lst) (+ index 1)
(append lst-so-far (list (car 1lst)))))
(else (slice-tail (cdr 1lst) (+ index 1) lst-so-
far))))
(if (< 1 j) (slice-tail 1st 0 nil) nil))

Page 20

