
TAIL RECURSION, SCHEME, REGULAR
EXPRESSIONS Solutions

CS 61A

August 4, 2021

1 Tail Recursion

Tail Recursion Overview

Often, when we write recursive functions, they can take up a lot of space by opening a
bunch of frames. Think about factorial(6). In order to solve it, we will have to open
6 frames. Now what if we tried factorial(1000000)? To avoid opening 1,000,000
frames, we can use a method called tail recursion. In tail call optimized languages, like
Scheme (but not Python), tail recursive functions only use a constant amount of space.
The key to defining a tail recursive function is to make sure no further calculations are
done after the recursive call, so that none of the values in the current frame have to be
saved. If we don’t have to save any values in the current frame, we can close it as we
make the next recursive call, ensuring that we only have one frame open.

In order to identify whether a function is tail recursive, first find the recursive call in your
function. Then, check whether you return the exact result of your recursive call, or if
you do work on the result. If you simply return the result of your recursive call, then
your function is tail recursive! However, if you do additional work to the result of your
recursive call, then it is not tail recursive. Additional work could be adding one to the
result of your recursive call and returning the new value, or appending it to a list and
returning the resulting list.

The general way we convert a recursive function to a tail recursive one is to move the cal-
culation outside the recursive call into one of the recursive call arguments to accumulate
the results. However, this is not always possible if our function doesn’t have an argu-
ment that accumulates the results, so we may have to create a helper function with an
accumulating argument and have the helper be a tail recursive function.

1



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 2

1. What is a tail call? What is a tail context? What is a tail recursive function?

A tail call is a call expression in a tail context.
A tail context is usually the final action of a procedure/function.
A tail recursive function is a function where all its recursive calls are in tail contexts.

2. Why are tail calls useful for recursive functions?

When a function is tail recursive, it can effectively discard all the past recursive frames
and only keep the current frame in memory. This means we can use a constant amount
of memory with recursion, and that we can deal with an unbounded number of tail
calls with our Scheme interpreter.

Page 2



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 3

3. Consider the following function:

(define (count-instance lst x)
(cond ((null? lst) 0)

((equal? (car lst) x) (+ 1 (count-instance
(cdr lst) x)))

(else (count-instance (cdr lst) x))))

What is the purpose of count-instance? Is it tail recursive? Why or why not?
Optional: draw out the environment diagram of this count-instance with lst =
(1 2 1) and x = 1.

count-instance returns the number of times x appears in lst.
It is not tail recursive. The call to count-instance is an arguments to a function
call, so it will not be the final thing we do in every frame (we will have to apply +
after evaluating it.)

4. Rewrite count-instance to be tail recursive. (Hint: helper functions are often useful in
implementing Tail Recursion.)

(define (count-tail lst x)

)

(define (count-tail lst x)
(define (count-helper lst instances)
(cond ((null? lst) instances)

((equal? (car lst) x) (count-helper (cdr lst) (+
instances 1)))

(else (count-helper (cdr lst) instances))))
(count-helper lst 0))

Page 3



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 4

5. Implement filter, which takes in a one-argument function f and a list lst, and
returns a new list containing only the elements in lst for which f returns true. Your
function must be tail recursive.
You may wish to use the built-in append function, which takes in two lists and returns
a new list containing the elements of the first list followed by the elements of the
second.

;Doctests
scm> (filter (lambda (x) (> x 2)) '(1 2 3 4 5))
(3 4 5)

(define (filter f lst)

)

(define (filter f lst)
(define (filter-tail lst so-far)

(cond ((null? lst) so-far)
((f (car lst)) (filter-tail (cdr lst)

(append so-far (list (car lst)))))
(else (filter-tail (cdr lst) so-far))))

(filter-tail lst nil))

Page 4



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 5

2 Scheme

1. Suppose Isabelle bought turnips from the Stalk Market and has stored them in ran-
dom amounts among an ordered sequence of boxes. By the magic of time travel,
Isabelle’s friend Tom Nook can fast-forward one week into the future and determine
exactly how many of Isabelle’s turnips will rot over the week and have to be dis-
carded.

Assuming that boxes of turnips will rot in order, i.e. all of box 1’s turnips will rot
before any of box 2’s turnips, help Isabelle determine which turnips will still be fresh
by week’s end. Specifically, fill in decay, which takes in a list of positive integers
boxes, which represents how many turnips are in each box, and a positive integer
rotten representing the number of turnips that will rot, and returns a list of non-
negative integers that represents how many fresh turnips will remain in each box.

; doctests
scm> (define a '(1 6 3 4))
a
scm> (decay a 1)
(0 6 3 4)
scm> (decay a 5)
(0 2 3 4)
scm> (decay a 9)
(0 0 1 4)
scm> (decay a 1000)
(0 0 0 0)

(define (decay boxes rotten)

)

Page 5



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 6

(define (decay boxes rotten)
(cond

((null? boxes) nil)
((< rotten (car boxes)) (cons (- (car boxes) rotten)

(cdr boxes)))
(else (cons 0 (decay (cdr boxes) (- rotten (car

boxes)))))
)

)

Page 6



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 7
2. (a) Define append, which takes in two lists and returns a new list with all the ele-

ments of the first list followed by all the elements of the second. Do not use the
built-in append function.

Page 7



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 8

> (append '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)

(define (append lst1 lst2)

)

(define (append lst1 lst2)
(if (null? lst1) lst2

(cons (car lst1) (append (cdr lst1) lst2)))))

(b) Define reverse. Hint: use append.

> (reverse '(1 2 3))
(3 2 1)

(define (reverse lst)

)

(define (reverse lst)
(if (null? lst) lst

(append (reverse (cdr lst)) (list (car lst)))))

(c) Define reverse tail-recursively. Hint: use a helper function and cons.

(define (reverse lst)

) Page 8



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 9

(define (reverse lst)
(define (helper lst reversed)

(if (null? lst) reversed
(helper (cdr lst) (cons (car lst) reversed ))))

(helper lst '()))

3 Scheme Challenge

1. Finish the functions max and max-depth. max takes in two numbers and returns the
larger. Function max-depth takes in a list lst and returns the maximum depth of
the list. In a nested scheme list, we define the depth as the number of scheme lists a
sublist is nested within. A scheme list with no nested lists has a max-depth of 0.

;doctests
scm> (max 1 5)
5
scm> (max-depth '(1 2 3))
0
scm> (max-depth '(1 2 (3 (4) 5)))
2
scm> (max-depth '(0 (1 (2 (3 (4) 5) 6) 7))
4

(define (max x y) _____________________________________)

(define (max-depth lst)
(define (helper lst curr)

(cond
((__________) ________________________)
((__________) (max ______________________________

________________________________))
(else (helper ________________________))

)
)
(____________________________)

)

Page 9



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 10

(define (max x y) (if (> x y) x y))

(define (max-depth lst)
(define (helper lst curr)

(cond
((null? lst) curr)
((pair? (car lst)) (max (helper (car lst)

(+ 1 curr))
(helper (cdr lst) curr)))

(else (helper (cdr lst) curr))
)

)
(helper lst 0)

)

Page 10



CS 61A TUTORIAL 11: TAIL RECURSION, SCHEME, REGULAR EXPRESSIONS Page 11

4 Regular Expressions (Optional)

Note: This problem is provided as extra practice, and most likely will not be covered in
tutorial.

1. We are given a linear equation of the form mx + b, and we want to extract the m and
b values. Remember that ’.’ and ’+’ are special meta-characters in Regex.

This problem is written by Kunal Agarwal

import re
def linear_functions(eq_str):

"""
Given the equation in the form of 'mx + b', returns a

tuple of m and b values.
>>> linear_functions("1x+0")
[('1', '0')]
>>> linear_functions("100y+44")
[('100', '44')]
>>> linear_functions("99.9z+23")
[('99.9', '23')]
>>> linear_functions("55t+0.4")
[('55', '0.4')]
"""
return re.findall(r"__________", eq_str)

r'(\d*\.?\d+)\w\+?(\d*\.?\d+)'

Page 11


