INTERPRETERS AND MACROS Solutions

CS61A

July 30, 2021

Interpreters

Interpreters Overview
An interpreter is essentially a program that understands and processes other programs.

The interpreter design we will be covering in 61A is the Read-Eval-Print Loop, which
consists of the following steps:

1. Read the text input and load it into Python as a Pair

2. In each Scheme list, evaluate the operator (figure out if it’s a +, car, etc.)
3. Recursively evaluate the operands (i.e. parameters) of the operation

4. Apply the operator to the operands and return the result

One of the challenges of designing interpreters is to represent the input in a way that
the interpreter’s language can understand. For example, since our Scheme interpreter
is written in Python, we need to convert Scheme tokens to a Python representation. To
achieve this, we will use the Pair object, which is essentially a Linked List that takes in
nil instead of Link.empty.

Asanexample, (1ist 1 2 3) inScheme canbeconvertedtoPair (’1ist’, Pair (1,
Pair (2, Pair(3, nil)))). This conversion is done in the Read step of the Read-
Eval-Print loop. Note that nothing is evaluated in the Read step yet- everything is treated
as just another token.



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 2

The following questions refer to the Scheme interpreter. Assume we’re using the im-
plementation seen in lecture and in the Scheme project.

1. What's the purpose of the read stage in a Read-Eval-Print Loop? For our Scheme
interpreter, what does it take in, and what does it return?

The read stage returns a representation of the code that is easier to process later in the
interpreter by putting it in a new data structure. In our interpreter, it takes in a string
of code, and outputs a Pair representing an expression (which is really just the same
as a Scheme list).

2. What are the two components of the read stage? What do they do?

The read stage consists of

1. The lexer, which breaks the input string and breaks it up into tokens (individual
characters or symbols)

2. The parser, which takes that string of tokens and puts it into the data structure that
the read stage outputs (in our case, a Pair).

3. Write out the constructor for the Pair object the read stage creates with the input string
(define (foo x) (+ x 1))

Pair(”define”, Pair(Pair(”foo”, Pair(”x”, nil)), Pair(Pair(”+”, Pair(”"x”, Pair(1, nil))),

nil)))

4. For the previous example, imagine we saved that Pair object to the variable p. How
could we check that the expression is a define special form? How would we access
the name of the function and the body of the function?

We could check to see that it’s a define special form by checking if p. first == "
define".

We could get its name by accessing p.second. first.first and get the body of
the function with p.second.second. first.

Page 2



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 3

5. Circle or write the number of calls to scheme_eval and scheme_apply for the code
below.

(i€ 1 (+ 2 3) (/ 1 0))
scheme_eval 1 3 4 6
scheme_apply 1 2 3 4

6 scheme_eval, 1 scheme_apply.

(or #f (and (+ 1 2) 'apple) (- 5 2))

scheme_eval 6 8 9 10
scheme_apply 1 2 3 4

8 scheme_eval, 1 scheme_apply.

(define (square x) (* x X))

(+ (square 3) (- 3 2))

scheme_eval 2 5 14 24
scheme_apply 1 2 3 4

14 scheme_eval, 4 scheme_apply.

(define (add x y) (+ x vy))

(add (= 5 3) (or 0 2))

13 scheme_eval, 3 scheme_apply.

Page 3



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 4

Macros

Macros Overview Whereas normal Scheme evaluation entails evaluating the operator,
then evaluating the operands, before finally applying the operator on operands, macros
evaluation involves three steps:

1. Evaluate the operator
2. Evaluate the body of the macro procedure without evaluating the operands
3. Evaluate the expression produced by the body and return the result.

Because the body is evaluated without evaluating the operands at first, macros are pow-
erful and allow us to do more than scheme procedures, like implementing new special
forms, control the order of evaluation, and more.

Below is a simple example of a macro. Note that even though we passin (print "hello)
as an operands, we don’t evaluate the expression and print right away. Instead we first
evaluate the body of the macro procedure, and afterwards we evaluate the expression
produced by the macro.

(define-macro (twice expr)
(list 'begin expr expr)

scm> (twice (print 'hello))
hello
hello

When twice is called, it will first generate a Scheme list that looks like (1ist ’begin
" (print "hello) ' (print ’hello)) (theinputisautomatically quoted rather than
evaluated).

The interpreter will then automaticaly call eval on this list of literals to treat it as if you
had just typed it into the interpreter directly.

Page 4



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 5
Quoting, Quasiquoting, Unquoting All Scheme expressions are lists except for atomic
expressions like numbers and symbols; so call expressions and special forms are lists too;
Example: (+ 1 2)

The (quote expression) special form, also denoted by a *, simply returns expression
- it does not evaluate it. This means we can write a Scheme expression and have the ex-
pression remain as an expression; if an expression is a call expression or special form, this
means the expression will remain a list.

The (quasiquote expression) special form, *, has the same effect as quote, except
that any expression within expression can be unquoted by preceding it with , or the
unquote special form; any unquoted expression is evaluated, whereas everything else
within expression is not, as normal. Quasiquote and unquote are often used in the
body of macro procedures to selectively evaluate certain parts.

(eval expression) isa procedure that simply evaluates its argument. Note that since
eval is a procedure, expression is evaluated first before applying eval.

To build off of the twice example introduced earlier, it is possible to replace all 1ist
or cons operations with an expression involving quotes, quasiquotes, and unquotes to
produce an identical result:

(define-macro (twice expr)
" (begin ,expr ,expr)

scm> (twice (print 'hello))
hello
hello

Page 5



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 6
1. What will Scheme output?

scm> (define x 6)

scm> (define y 1)

Y

scm> ' (x y a)

(x y a)

scm> " (,x ,y a)

(6 1 a)

scm> T (,x y a)

(6 y a)

scm> (, (1f (=1 2) "+ "=y 1 2)
(+ 1 2)

scm> (eval "~ (, (if (-1 2) '+ '—)y 1 2))
3

scm> (define (add-expr al a2)
(list '+ al a2))

add-expr

scm> (add-expr 3 4)

(+ 3 4)

Page 6



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 7

scm> (eval (add-expr 3 4))

7

scm> (define—-macro (add—-macro al a2)
(list '+ al a2))

add-macro

scm> (add-macro 3 4)

9

Page 7



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 8

2. Implement if-macro, which behaves similarly to the if special form in Scheme but
has some additional properties. Here’s how the i f-macro is called:
if <condl> <exprl> elif <cond2> <expr2Z2> else <expr3>
If cond1 evaluates to a truth-y value, exprl is evaluated and returned. Otherwise, if
cond? evaluates to a truth-y value, expr2 is evaluated and returned. If neither condi-
tion is true, expr3 is evaluted and returned.

;Doctests

scm> (if-macro (=1 0) 1 elif (=1 1) 2 else 3)

2

scm> (if-macro (=1 1) 1 elif (= 2 2) 2 else 3)

1

scm> (if-macro (=1 0) (/ 1 0) elif (=2 0) (/ 1 0) else 3)
3

(define-macro (if-macro condl exprl elif cond2 expr2 else
expr3)

Page 8



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 9

(define—macro (if-macro condl exprl elif cond2 expr2 else
expr3)
(list 'cond (list condl exprl)
(list cond2 expr2)
(list 'else expr3)))

Alternate solution with nested ifs:
(define-macro (if-macro condl exprl elif cond2 expr2 else
expr3)
(list 'if condl exprl (list 'if cond2 expr2 expr3)))

Alternate solution with quasiquoting:
(define-macro (if-macro condl exprl elif cond2 expr2 else
expr3)
" (cond (,condl ,exprl)
(,cond2 ,expr2)
(else ,expr3)))

3. Could we have implemented if-macro using a function instead of a macro? Why or
why not?

Without using macros, the inputs would be evaluated when we evaluated the func-
tion call. This is problematic for two reasons:
First, we only want to evaluate the expressions under certain conditions. If cond1 was
false, we would not want to evaluate exprl. This might lead to errors!
Secondly, some of the inputs to the call would be names which have no binding in the
global frame. Elif, for example, is not supposed to be interpreted as a name but rather
as a symbol. This would cause our code to error if we ran it as is!
However, it is also possible to recreate a similar behavior to macros with a function
by delaying the final evaluation. This makes it considerably more complicated to pro-
duce the desired behavior, since all inputs would have to be quoted and eval would
have to be manually called on the result:
(define (if-macro-without-macro condl exprl elif cond2 expr2
else expr3)
(list 'cond (list condl exprl)
(list cond2 expr2)
(list 'else expr3))

(eval (if-macro-without-macro '(=1 0) '"(/ 1 0) 'elif "(= 2 0)
(/1 0) 'else '3))

Page 9



CS 61A TUTORIAL 10: INTERPRETERS AND MACROS Page 10

4. Implement apply-twice, which is a macro that takes in a call expression with a
single argument. It should return the result of applying the operator to the operand
twice.

;Doctests
scm> (define add-one (lambda (x) (+ x 1)))

add-one

scm> (apply-twice (add-one 1))
3

scm> (apply-twice (print 'hi))
hi

undefined

(define-macro (apply-twice call-expr)

" (let ((operator )

(operand ))

(define-macro (apply-twice call-expr)
" (let ((operator , (car call-expr))
(operand , (car (cdr call-expr))))
(operator (operator operand))))

Page 10



