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Scheme is a functional language, as opposed to Python, which is an imperative language.
A Python program is comprised of statements or ”instructions” which do not evaluate to
a value (an example of a statement would be something like x = 3 in Python. This
does not evaluate to any value but just instructs Python to create a variable x with the
value 3), whereas a Scheme program is comprised solely of expressions, each of which
simply evaluates to a value. Remember that the term evaluate means to find the value
of something. A variable is evaluated by looking up the name in the current frame, and
a function call expression is evaluated using the three steps listed below. The thing to
notice is that different types of expressions have different rules for how to evaluate those
expressions, and this goes for both Python and Scheme.

The four basic types of expressions in Scheme are literals (i.e., a value itself), call expres-
sions (procedure calls), special forms (language features), and variables. A call expres-
sion or special form is denoted by a pair of parentheses and takes prefix notation, i.e., it
is formed as so:
(operator operand_0, operand_1, ... , operand_n)

(Keep in mind each item in a call expression is also an expression)

Evaluation of a call expression progresses so:

1. Evaluate operator (returning a procedure)

2. Evaluate operands

3. Apply operator on operands
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If Expression: The if keyword is similar to if/else statements in Python. It works as
follows:
(if <predicate> <do if true> <do if false>)

This is similar to the following code in Python:
if <predicate>:

<do if true>
else:

<do if false>

Note that in Python, if is a statement whereas in Scheme, if is an expression and eval-
uates to a value like any other expression would. This means that in Scheme you could
write something like this where the if expression can be placed as an operand in a func-
tion call expression:
scm> (+ 1 (if #t 9 99))
10

Just like in Python, the <do if false> (in Python this would be the equivalent to the
else clause) is optional. If there is no <do if false> and the <predicate> evaluates
to false then the if expression evaluates to undefined.

Define Expression: define does two things in Scheme. The first is that it defines vari-
ables using the following syntax:
(define <name> <expression>)

The way this works is Schme will evaluates <expression> and binds the value to <
name> in the current environment. <name> must be a valid Scheme symbol (you can
think of a symbol as an identifier or variable name).

define is also used to define functions using the following syntax (note that this is differ-
ent from using define to create variables as there is an extra pair of parentheses around
<name> [param] ...):
(define (<name> [param] ...) <body> ...)

Either way, after the <name> is bound to either a function or value, the define expression
evaluates to the symbol <name>.
scm> (define x 3)
x

https://cs61a.org/articles/scheme-spec/ will direct you to a page with all of
the explanations and syntax descriptions of Scheme. Use it when filling out the WWSD
section!
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1 Intro to Scheme

1. What will Scheme output?

scm> (define pi 3.14)

pi

scm> pi

3.14

scm> 'pi

pi

scm> (+ 1 2)

3

scm> (+ 1 (* 3 4))

13

scm> (if 2 3 4)

3

scm> (if 0 3 4)

3

scm> (- 5 (if #f 3 4))

1

scm> (if (= 1 1) 'hello 'goodbye)

hello
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scm> (define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

factorial

scm> (factorial 5)

120
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2. Hailstone yet again
Define a program called hailstone, which takes in two numbers seed and n, and
returns the nth hailstone number in the sequence starting at seed. Assume the hail-
stone sequence starting at seed is longer or equal to n. As a reminder, to get the next
number in the sequence, if the number is even, divide by two. Else, multiply by 3 and
add 1.

Useful procedures

• quotient: floor divides, much like // in python

(quotient 103 10) outputs 10

• remainder: takes two numbers and computes the remainder of dividing the
first number by the second

(remainder 103 10) outputs 3

; The hailstone sequence starting at seed = 10 would be
; 10 => 5 => 16 => 8 => 4 => 2 => 1

; Doctests
> (hailstone 10 0)
10
> (hailstone 10 1)
5
> (hailstone 10 2)
16
> (hailstone 5 1)
16

(define (hailstone seed n)

)
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(define (hailstone seed n)
(if (= n 0)

seed
(if (= 0 (remainder seed 2))

(hailstone
(quotient seed 2)
(- n 1))

(hailstone
(+ 1 (* seed 3))
(- n 1)))))

2 Scheme Lists

Unlike Python, all Scheme lists are linked lists. Recall a linked list is made up of Links
that have a first and a rest, where the rest is another Link. Similarly, Scheme lists are
made up of pairs with a first and a rest, where the rest is another pair.

Ways to make scheme lists:

• Cons
Syntax: (cons <car-elem> <cdr-elem>)
Takes in a pair of two elements; similar to how a python linked list has 2 elements
as well- first and rest

• List
Syntax: (list <elem1> <elem2> ...)
Takes in an arbitrary number of elements/arguments, and constructs a list where
each elem is the first of its own pair. Note how this differs from cons where you
specify a first and rest rather than just specifying the first of each pair. All the
arguments will be evaluated before being collected into the scheme list.

• ’ (aka single quote)
Syntax: '(<elem1> <elem2> ...)
Also takes in an arbitrary number of elements and construct a list out of the ele-
ments, but the arguments are not evaluated.

Ways to access list items:

• Car
Syntax: (car <pair>)
Gets you the first item of a pair

• Cdr
Syntax: (cdr <pair>)
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Gets you the second item of a pair

• Cadr
Syntax: (cadr <pair>)
Gets you the car of the cdr

• Cddr
Syntax: (cddr <pair>)
Gets you the cdr of the cdr
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3. What will Scheme output? Draw box and pointer diagrams where applicable.
scm> (cons 1 (cons 2 nil))

(1 2)

scm> (cons 1 '(2 3 4 5))

(1 2 3 4 5)

When we use the
quote before the list, we are saying that we should put the literal list (2 3 4 5) in the
cdr of this list. So in this case we create a list where the first element (car) is 1, and

the cdr is the list (2 3 4 5).

scm> (cons 1 '(2 (cons 3 nil)))

(1 2 (cons 3 ()))

Since we
also used a quote here, we do not evaluate the (cons 3 nil). We keep everything

inside the quotes the same so the cdr of this list is the list (2 (cons 3 nil)).
That means that we add the element 2, and then the nested list (cons 3 nil).

scm> (cons 1 (2 (cons 3 nil)))

eval: bad function in : (2 (cons 3 nil))

While evaluating the operands, Scheme will try to evaluate the expression (2 (cons
3 nil)). Since 2 is not a valid operator, this expression Errors.

scm> (cons 3 (cons (cons 4 nil) nil))
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(3 (4))

scm> (define a '(1 2 3))

a

Defines a list of elements of (1 2 3) and binds the list to the variable a. Recall that
define returns the name of the symbol.

scm> a

(1 2 3)

scm> (car a)

1

scm> (cdr a)

(2 3)

scm> (cadr a)

2

Recall that cadr is short for (car (cdr a)). From above, we know that (cdr a) is
(2 3). From that, we can evaluate (car (cdr a)) to 2.

How can we get the 3 out of a?

(car (cdr (cdr a)))

To get to the pair that contains 3, we need to call (cdr (cdr a)). To get the element
3, we need the car of (cdr (cdr a)).
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4. The map function takes in a two-argument function and a list of elements, and applies
that function to each element in that list. We want to define our own version of the
map function EXCEPT instead of applying a function to a list of elements, we want to
pass in a single element and apply each function in a list of functions to that element.

Define a function reverse-map, which takes in a list of functions, operators, and a
single argument, arg, and returns a list that results from applying all of the functions
in operators on arg. You may assume that all functions in operators will work
properly with the single input arg.

; doctests
scm> (define funcs (list (lambda (x) (- x 10)) (lambda (x) (*

x 2)) (lambda (x) (integer? x))))
funcs
scm> (reverse-map funcs 2)
(-8 4 #t)
scm> (reverse-map funcs 16)
(6 32 #t)

(define (reverse-map operators args)

(if (______________________________)

_____________________________________________ \

______________________________________________)
)

(define (reverse-map operators arg)
(if (null? operators)

nil
(cons ((car operators) arg)

(reverse-map (cdr operators) arg)))
)
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5. Define is-prefix, which takes in a list p and a list lst and determines if p is a
prefix of lst. That is, it determines if lst starts with all the elements in p.

; Doctests:
scm> (is-prefix '() '())
#t
scm> (is-prefix '() '(1 2))
#t
scm> (is-prefix '(1) '(1 2))
#t
scm> (is-prefix '(2) '(1 2))
#f
; Note here p is longer than lst
scm> (is-prefix '(1 2) '(1))
#f

(define (is-prefix p lst)

)
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; is-prefix with nested if statements
(define (is-prefix p lst)

(if (null? p)
#t
(if (null? lst)

#f
(and

(= (car p) (car lst))
(is-prefix (cdr p) (cdr lst))))))

; is-prefix with a cond statement
(define (is-prefix p lst)

(cond
((null? p) #t)
((null? lst) #f)
(else (and (= (car p) (car lst))

(is-prefix (cdr p) (cdr lst))))))

6. Implement waldo. waldo returns #t if the symbol waldo is in a list.

scm> (waldo '(1 4 waldo))
#t
scm> (waldo '())
#f
scm> (waldo '(1 4 9))
#f

(define (waldo lst)

)

Page 12



CS 61A TUTORIAL 9: INTRODUCTION TO SCHEME AND SCHEME LISTS Page 13

(define (waldo lst)
(cond ((null? lst) #f)

((eq? (car lst) 'waldo) #t)
(else (waldo (cdr lst)))

)
)

Alternate solution:
(define (waldo lst)

(if (null? lst)
#f
(if (eq? (car lst) 'waldo)

#t
(waldo (cdr lst))

)
)

)

Similar to how we focus just think about first and rest when working with linked lists,
we want to think about solving this question in terms of car and cdr in scheme. At a
high level, we can check we can check (car lst) is equal to waldo. If it is, we can return
true. Otherwise, we check the rest of the list: (cdr lst). Last, we conclude that waldo
is not in the list when we have checked every element but still not found at match.

Observe that the second doctest is essentially the simplest input we can give. From
here, we get our first base case– if we are given an empty Scheme list, then return #f.
Otherwise, notice that regardless of where in the list we find ’waldo’, our function
should return #t. So our function can just stop after we find the first instance of
’waldo in the list, if it exists. Therefore, our second base case checks if our current
element (the car of lst) is ’waldo and returns #t if this is true. Finally, if neither base
case is satisfied, then we must search through the rest of lst, excluding the first element
we just checked, for the string ’waldo. So, we make a recursive call using the cdr of
lst.

Many problems that involve traversing through a Scheme list will have a similar
structure to this solution. Recursive calls on (cdr lst) are also common, similar to
recursive calls on link.rest. Note that you can also write a solution using two nested
ifs instead of cond, but cond is often a little cleaner to read.
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7. Extra challenge: Define waldo so that it returns the index of the list where the symbol
waldo was found (if waldo is not in the list, return #f).
scm> (waldo '(1 4 waldo))
2
scm> (waldo '())
#f
scm> (waldo '(1 4 9))
#f

(define (waldo lst)

)

(define (waldo lst)
(define (helper lst index)

(cond ((null? lst) #f)
((eq? (car lst) 'waldo) index)
(else (helper (cdr lst) (+ index 1)))

)
)

(helper lst 0)
)
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Recall HW2, problem 3, ”pingpong” without assignment. To get around the assign-
ment restriction, we introduced a new variable to keep track of state. We passed some
state into a helper function to keep track of our iteration. In this problem, we will use
the same idea for our implementation.

Inside our recursive helper function, we use the same logic as the original waldo
question. Specifically, if the list is empty, we return false. If the first element we see
is equal to waldo, we now return the index we have been tracking instead of true.
Finally, to recursively search, we call the helper function on the rest of the list and
increment the index by 1, returning the result of that call. We call this helper function
initially with arguments ’lst’ and index 0 to start from the beginning of the list.

A logical alternate solution would be to increment 1 after the recursive call to helper
(without incrementing index), instead of adding one to the index, and then recursing.
This solution would actually be incorrect. When we increment by one, if the element
is not found, #f would not be properly returned. At the end of recursion, we would
try to add 1 to #f, which results in an error.
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