LINKED LISTS AND MUTABLE TREES

CS61A

July 23, 2021

Linked Lists

Linked lists consists of a series of links which have two attributes: first and rest.
The first attribute contains the value of the link (which can be an integer, string, list,
even another linked list!). The rest attribute, on the other hand, is a pointer to another
link or Link.empty, which is just an empty linked list represented traditionally by an
empty tuple (but not necessarily, so never assume that it is represented by an empty tuple
otherwise you will break an abstraction barrier!).

Because each link contains another link or Link . empty, linked lists lend themselves to
recursion (just like trees). Consider the following example, in which we double every
value in linked list. We mutate the current link and then recursively double the rest.

def double_values (link):
if link is not Link.empty:
link.first = 2 # we mutate the value inside of the link
double_val (link.rest) # we mutate the values in the rest
of the linked list
if the link is empty then do nothing

However, unlike with trees, we can also solve many linked list questions using iteration.
Take the following example where we have written double_values using a while loop
instead of using recursion:

def double_values_iter (link):
while link is not Link.empty:
link.first x= 2
link = link.rest # Note that this does not mutate
the original linked list;
it changes what link the wvariable
1link is pointing to

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES

Page 2

For each of the following problems, assume linked lists are defined as follows:

class Link:
empty = ()
def _ init_ (self, first, rest=empty):
assert rest is Link.empty or isinstance (rest, Link)
self.first = first
self.rest = rest

def _ repr_ (self):
if self.rest is not Link.empty:

rest_repr = ', ' + repr(self.rest)
else:
rest_repr = "'
return 'Link (' + repr(self.first) + rest_repr + ')'

def str (self):
string = '<'
while self.rest is not Link.empty:
string += str(self.first) + ' '
self = self.rest
return string + str(self.first) + '>'

To check if a Link is empty, compare it against the class attribute Link.empty:

if link is Link.empty:
print ('This linked list is empty!"')

Page 2

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES Page 3

1. What will Python output? Draw box-and-pointer diagrams to help determine this.
>>> a = Link(l, Link (2, Link(3)))

>>> a.first

>>> a.first = 5

>>> ag.first

>>> a.rest.first

>>> a.rest.rest.rest.rest.first

Page 3

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES

Page 4

>>>

>>>

>>>

>>>

>>>

>>>

a.rest.rest.rest = a

a.rest.rest.rest.rest.first

repr (Link (1, Link (2, Link (3, Link.empty))))

Link (1, Link (2, Link (3, Link.empty)))

str(Link (1, Link (2, Link(3))))

print (Link (Link (1), Link (2, Link(3))))

Page 4

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES Page 5

2. Write a function skip, which takes in a Link and returns a new Link with every
other element skipped.

def skip(lst):
>>> a = Link (1, Link (2, Link (3, Link(4))))
>>> 3
Link (1, Link (2, Link (3, Link (4))))
>>> b = skip(a)
>>> b
Link (1, Link(3))
>>> a
Link (1, Link (2, Link (3, Link(4)))) # Original is unchanged

if

elif

3. Now write function skip by mutating the original list, instead of returning a new list.
Do NOT call the Link constructor.

def skip(lst):
>>> a = Link (1, Link (2, Link (3, Link(4))))
>>> skip(a)
>>> 3
Link (1, Link (3))

Page 5

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES Page 6

4. (Optional) Write has_cycle which takes in a Link and returns True if and only
if there is a cycle in the Link. Note that the cycle may start at any node and be of
any length. Try writing a solution that keeps track of all the links we’ve seen. Then
try to write a solution that doesn’t store those witnessed links (consider using two
pointers!).

def has_cycle(s):
>>> has_cycle (Link.empty)
False
>>> a = Link (1, Link (2, Link(3)))
>>> has_cycle(a)
False
>>> a.rest.rest.rest = a
>>> has_cycle(a)

True
mmonw

Page 6

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES Page 7

Mutable Trees

The difference between the Tree class and the Tree abstract data type (using functions)
¢ Using the constructor: Capital T for tree class and lower-case t for tree ADT
t = Tree(l)#classvs.t = tree(l){fadt functions

¢ hilabel and branches are now attributesand, is_leaf () is a method of the class
instead of them all being functions.

t.label vs. label (t)
t .branches vs. branches (t)
t.is_leaf()vs. is_leaf (t)
¢ A tree object is mutable while tree ADT is not mutable
t.label = 2vs. label (t)= 2 #this would error

This means we can mutate values in the tree object instead of making a new tree
that we return. In other words, we can solve tree class problems non-destructively
and destructively, but can only solve tree ADT problems non-destructively

Besides these differences, we use the same approach and ideas from ADT trees and apply
them to Tree class including problem solving (base case, recursive calls, how to solve) and
respecting abstraction barrier. For the following problems, use this definition for the Tree
class:
class Tree:
def init_ (self, label, branches=[]):
self.label = label
self.branches = list (branches)

def is_leaf (self):
return not self.branches

def _ repr_(self):
if self.branches:

branch_str = ', ' + repr(self.branches)
else:
branch_str = "'
return 'Tree({0}{1})"'.format (self.label, branch_str)

Page 7

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES Page 8

1. Implement tree_sum which takes in a Tree object and replaces the label of the tree
with the sum of all the values in the tree. t ree__sum should also return the new label.

def tree_sum(t) :

>>> t = Tree(l, [Tree(2, [Tree(3)]), Tree(4)])
>>> tree_sum(t)

10

>>> t.label

10

>>> t.branches[0].label

5

>>> t.branches[1l].label

4

Page 8

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES

Page 9

2. Define delete_path_duplicates, which takesin t, a tree with non-negative labels.
If there are any duplicate labels on any path from root to leaf, the function should
mutate the label of the occurrences deeper in the tree (i.e. farther from the root) to be

the value -1.

def delete_path_duplicates (t):

>>> t = Tree(l, [Tree(2, [Tree(l), Tree(l)1)1)

>>> delete_path_duplicates(t)

>>> ¢

Tree (1, [Tree(2, [Tree(-1), Tree(-1)]1)1)

>>> t2 = Tree(l, [Tree(2), Tree(2, [Tree(2, [Tree(l,
5111

>>> delete_path_duplicates (t2)

>>> t2

[Tree

Tree (1, [Tree(2), Tree(2, [Tree(-1, [Tree(-1, [Tree(5)1)1])

DR

def helper (,) :

if

else:

for in

3. Given a tree t, mutate the tree so that each leaf’s label becomes the sum of the labels

of all nodes in the path from the leaf node to the root node.

def replace_leaves_sum(t) :
mmwn

Page 9

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES Page 10

>>> t = Tree(l, [Tree(3, [Tree(2), Tree(8)]), Tree(5)])
>>> replace_leaves_sum(t)
>>> t

Tree (1, [Tree(3, [Tree(6), Tree(l2)]), Tree(6)])

def helper (,) :

if t.is_leaf () :

for b in t.branches:

Page 10

CS 61A TUTORIAL 8: LINKED LISTS AND MUTABLE TREES Page 11

4. Write a function that returns true only if there exists a path from root to leaf that
contains at least n instances of elemin a tree t.

def contains_n(elem, n, t):

>>> tl1 = Tree(l, [Tree(l, [Tree(2)])1)
>>> contains_n(l, 2, tl)

True

>>> contains_n (2, 2, tl)

False

>>> contains_n(2, 1, tl)

True

>>> t2 = Tree(l, [Tree(2), Tree(l, [Tree(l), Tree(2)1)1)
>>> contains_n (1, 3, t2)

True

>>> contains_n (2, 2, t2) # Not on a path
False

if n ==

return True

elif

return

elif

return

else:

return

Page 11

