
OOP, INHERITANCE, AND ITERATORS &
GENERATORS

CS 61A

July 21, 2021

1 OOP

class Car:
wheels = 4
def __init__(self):

self.gas = 100

def drive(self):
self.gas -= 10
print("Current gas level:", self.gas)

my_car = Car()

Dot Notation
Dot notation with an instance before the dot automatically supplies the first argument to
a method.
>>> my_car.drive()
Current gas level: 90

We don’t have to explicitly pass in a parameter for the self argument of the drive
method as the instance to the left of the dot (the my_car object of the Car class) is au-
tomatically passed into the first parameter of the method by Python. So, what is self?
By convention, we name the first argument of any method in any class ”self” so the self
you see as the arguments in all the methods will refer to the object that called this method.
Note that Python does not enforce this, so you could name the first parameter anything
you wanted; but it is best practice to name it self.

1



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 2

There is another way of calling a method:
>>> Car.drive(my_car)
Current gas level: 80

In this case, the thing to the left of the dot is a class itself and not an instance of a class so
Python will not automatically use the item on the left as the first argument of the method.
Therefore, we have to explicitly pass in an object for selfwhich is why we wrote my_car
in the parentheses as the argument to self.

The __init__ Method
The __init__ method of a class, which we call the constructor, is a special method that
creates a new instance of that class. In our code above, Car() makes a new instance of
the Car class because Python automatically calls the __init__ method when it sees a
”call” to that class (the class name followed by parentheses that can contain arguments if
the __init__ method takes in arguments). If the __init__ method takes in only the
self argument, nothing needs to be passed in to the constructor.

Instance Attributes and Class Attributes
In the example above, the class attribute wheels is shared by all instances of the Car
class; while gas is an instance attribute that’s specific to the instance my_car. In this
case, my_car.wheels and Car.wheels both return the value 4. The reason is that the
order for looking up an attribute is: instance attributes -> class attributes/methods ->
parent class attributes/methods.

Page 2



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 3

1. What would Python display? Write the result of executing the following code and
prompts. If nothing would happen, write ”Nothing”. If an error occurs, write ”Error”.

class Jedi:
lightsaber = "blue"
force = 25
def __init__(self, name):

self.name = name
def train(self, other):

other.force += self.force / 5
def __repr__(self):

return "Jedi " + self.name

Page 3



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 4

>>> anakin = Jedi("Anakin")
>>> anakin.lightsaber, anakin.force

>>> anakin.lightsaber = "red"
>>> anakin.lightsaber

>>> Jedi.lightsaber

>>> obiwan = Jedi("Obi-wan")
>>> anakin.master = obiwan
>>> anakin.master

>>> Jedi.master

>>> obiwan.force += anakin.force
>>> obiwan.force, anakin.force

>>> obiwan.train(anakin)
>>> obiwan.force, anakin.force

>>> Jedi.train(obiwan, anakin)
>>> obiwan.force, anakin.force

Page 4



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 5

2. Let’s build a Bear using OOP!

Bear instances should have an attribute name that holds the name of the bear. The
Bear class should have an attribute bears, a list that stores the name of each bear.

>>> oski = Bear('Oski')
>>> oski.name
'Oski'
>>> Bear.bears
['Oski']
>>> winnie = Bear('Winnie')
>>> Bear.bears
['Oski', 'Winnie']

class Bear:

Page 5



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 6

3. Let’s use OOP to help us implement our good friend, the ping-pong sequence!

As a reminder, the ping-pong sequence counts up starting from 1 and is always either
counting up or counting down.

At element k, the direction switches if k is a multiple of 8 or contains the digit 8.

The first 30 elements of the ping-pong sequence are listed below, with direction swaps
marked using brackets at the 8th, 16th, 18th, 24th, and 28th elements:
1 2 3 4 5 6 7 [8] 7 6 5 4 3 2 1 [0] 1 [2] 1 0 -1 -2 -3 [-4] -3

-2 -1 [0] -1 -2

Assume you have a function has eight(k) that returns True if k contains the digit
8.

>>> tracker1 = PingPongTracker()
>>> tracker2 = PingPongTracker()
>>> tracker1.next()
1
>>> tracker1.next()
2
>>> tracker2.next()
1

class PingPongTracker:
def __init__(self):

def next(self):

Page 6



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 7

2 Inheritance

Inheritance Overview
Inheritance is the idea that not all the methods or attributes of a class need to be speci-
fied in that SPECIFIC class. Instead they can be inherited, like if a class is a subgroup of
another class. For example, we can have a Marker class and also a DryEraseMarker
class. In this case, we can use inheritance to convey that a DryEraseMarker is a special-
ized version of a Marker. This avoids rewriting large blocks of code and gives us a nice
hierarchy to understand how our classes interact with each other.

You include the class you inherit from in the class definition (class SubClass(SuperClass
)). The subclass can inherit any methods, including the constructor from the superclass.
You also inherit class attributes of the superclass.
You can call the constructor or any othe method of the superclass with the code SuperClass
.__init__(<whatever parameters are required>) if you want the same con-
structor but with some additional information. All methods and class attributes can
be overridden in the subclass, by simply creating an attribute or method with the same
name.

Page 7



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 8

1. (H)OOP
Given the following code, what will Python output for the following prompts?

class Baller:
all_players = []
def __init__(self, name, has_ball = False):

self.name = name
self.has_ball = has_ball
Baller.all_players.append(self)

def pass_ball(self, other_player):
if self.has_ball:

self.has_ball = False
other_player.has_ball = True
return True

else:
return False

class BallHog(Baller):
def pass_ball(self, other_player):

return False

>>> catherine = Baller('Catherine', True)
>>> albert = BallHog('Albert')
>>> len(Baller.all_players)

>>> Baller.name

>>> len(albert.all_players)

Page 8



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 9

>>> catherine.pass_ball()

>>> catherine.pass_ball(albert)

>>> catherine.pass_ball(albert)

>>> BallHog.pass_ball(albert, catherine)

>>> albert.pass_ball(catherine)

>>> albert.pass_ball(albert, catherine)

2. Write TeamBaller, a subclass of Baller. An instance of TeamBaller cheers on the
team every time it passes a ball.

class TeamBaller(_______________):
"""
>>> caitlin = BallHog('Caitlin')
>>> cheerballer = TeamBaller('Peter', has_ball=True)
>>> cheerballer.pass_ball(caitlin)
Yay!
True
>>> cheerballer.pass_ball(caitlin)
I don't have the ball
False
"""
def pass_ball(_______________, ________________):

Page 9



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 10

3 Iterators & Generators

An iterable is any container that can be processed sequentially. Think of an iterable as
anything you can loop over, such as lists or strings. You can see this in for loops, which
sequentially loop through each element of a sequence. The anatomy of the for loop can
be described as:
for some_var in iterable:

<do something with some_var>

An iterator remembers where it is during its iteration. Though an iterator is an iterable,
the reverse is not necessarily true. Think of an iterable as a book whereas an iterator is a
bookmark.

Generators, which are a specific type of iterators, are created using the traditional func-
tion definition syntax in Python (def) with the body of the function containing one or
more yield statements. When a generator (a function that has yield in the body) is
called, it returns a generator object. When we call the generator object, we evaluate the
body of the function until we have yielded a value. The yield statement pauses the
function, yields the value, saves the local state so that evaluation can be resumed right
where it left off. yield operates similarly to a return statement.

Page 10



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 11

1. Write a generator that will take in two iterators and compares the first element of each
iterator and yields the smaller of the two values.

def interleave(iter1, iter2):
"""
>>> gen = interleave(iter([1, 3, 5, 7, 9]),

iter([2, 4, 6, 8, 10]))
>>> for elem in gen:
... print(elem)
...
1
2
3
4
5
6
7
8
9
"""

Page 11



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 12
2. (a) Implement n apply, which takes in 3 inputs f, n, x, and outputs the result of

applying f, a function, n times to x. For example, for n = 3, output the result of
f(f(f(x))).

def n_apply(f, n, x):
"""
>>> n_apply(lambda x: x + 1, 3, 2)
5
"""

for __________________________:

x = ________________________

return _______________________

(b) Now implement list gen, which takes in some list of integers lst and a function
f. For the element at index i of lst, list gen should apply f to the element i
times and yield this value lst[i] times. You may use n apply from the previ-
ous part.

def list_gen(lst, f):
"""
>>> a = list_gen([1, 2, 3], lambda x: x + 1)
>>> list(a)
[1, 3, 3, 5, 5, 5]
"""

for __________________________:

yield from [_______________________________________]

Page 12



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 13

3. Define filter_gen, a generator that takes in iterable s and one-argument function
f and yields every value from s for which f returns a truthy value.

def filter_gen(s, f):
"""
>>> list(filter_gen([1, 2, 3, 4, 5],

lambda x: x % 2 == 0))
[2, 4]
>>> list(filter_gen((1, 2, 3, 4, 5), lambda x: x < 3))
[1, 2]
"""

Page 13



CS 61A TUTORIAL 7: OOP, INHERITANCE, AND ITERATORS & GENERATORS Page 14
4. Write a generator function in_order that takes in a possibly nested list of integers
lst and yields its integer elements in ascending order as a single non-nested list. You
may find the built-in sorted function useful, which takes in a list of integers and
returns a sorted list.

def in_order(lst):
"""
>>> l1 = [[3, 4, 2], [1, 7, 4]]
>>> list(in_order(l1))
[1, 2, 3, 4, 4, 7]
>>> l2 = [2, [3], [1, [8], 4]]
>>> list(in_order(l2))
[1, 2, 3, 4, 8]
"""
order = []

for __________________________:

if ____________________________:

___________________________________
else:

___________________________________

____________________________________

Page 14


