
TREES AND MUTATION Solutions

CS 61A

July 9, 2021

1 Trees

What are trees?

A tree has a root label and a sequence of branches. Each branch of a tree is a tree. A tree
with no branches is called a leaf. Any tree contained within a tree is called a sub-tree of
that tree (such as a branch of a branch). The root of each sub-tree of a tree is called a node
in that tree. Trees are a recursive data abstraction, since trees have branches that are trees
themselves.

Because of this, it often makes sense to solve tree problems using recursion:

1. Base case is often when we reach a leaf node

2. Recursive case is often when we still need to recurse down, e.g. we haven’t hit a
leaf yet. Recursive calls need to break the problem into smaller parts, which for trees
often means passing in each branch as an input.

When trying to understand and solve tree problems, it is helpful to draw out the tree.

Things to remember:

def tree(label, branches=[]):
return [label] + list(branches)

def label(tree):
return tree[0]

def branches(tree):
return tree[1:] #returns a list of branches

1



CS 61A TUTORIAL 5: TREES AND MUTATION Page 2
Note: You don’t have to worry too much about how trees are actually represented as lists–
that’s the power of abstraction at work!

As shown above, the tree constructor takes in a label and a list of branches (which are
themselves trees).

tree(4,
[tree(5),
tree(2,

[tree(2),
tree(1)]),

tree(1),
tree(8,

[tree(4)])])

This creates a tree that looks like this:

4

5 2

2 1

1 8

4

Page 2



CS 61A TUTORIAL 5: TREES AND MUTATION Page 3

1. Let t be the tree depicted above. What do the following expressions evaluate to? If
the expressions evaluates to a tree, format your answer as tree(... , ...). (Note
that the Python interpreter wouldn’t display trees like this. This is just so you think
about trees as an ADT instead of worrying about their implementation.)

>>> label(t)

4

>>> branches(t)[1]

tree(2, [tree(2), tree(1)])

>>> branches(branches(t)[1])[1]

tree(1)

Page 3



CS 61A TUTORIAL 5: TREES AND MUTATION Page 4

2. Write the function sum_of_nodes which takes in a tree and outputs the sum of all
the elements in the tree.

def sum_of_nodes(t):
"""
>>> t = tree(...) # Tree from question 1.
>>> sum_of_nodes(t) # 4 + 5 + 2 + 1 + 8 + 2 + 1 + 4 = 27
27
"""

total = label(t)
for branch in branches(t):

total += sum_of_nodes(branch)
return total

Alternative solution:
return label(t) +\

sum([sum_of_nodes(b) for b in branches(t)])

Explanation:
Given that trees are an inherently recursive data type, we can approach this problem
similar to a recursion problem.
The first thing we want to look at is the base case. The smallest possible input is just
passing in a leaf into the function. In this case our return should just be the label of
the leaf so we save that as variable “total”.
Now we approach the recursive element of the problem where we need to look at all
the branches of the tree. All the branches are also trees and we need to find the sums
of the branches to add to our total so we can call our function on each branch.
To individually get each branch, we use a for loop iterating over branches(t) and call
the function on each branch. Once we have the result of calling the function, we can
add it to our total result which is keeping track of the total sum.
Finally, we can return the total. The reason why we don’t need a base case of ‘if
is leaf(t)‘ is because our for loop will only run if there are branches and if it is a leaf,
it will not run and will skip it and just return the total value which is just the label of
the tree.
Note: ‘for branch in branches(t)‘ is a useful way to recurse through a tree and is com-
monly used in many tree problems! The alternate solution contains the same logic
but makes effective use of list comprehension. ‘sum‘ is a useful built-in function in
Python to return the sum of a list.

Page 4



CS 61A TUTORIAL 5: TREES AND MUTATION Page 5

3. Write a function, replace_x that takes in a tree, t, and returns a new tree with all
labels x replaced with 0.

For example, if we called replace_x(t, 2) on the following tree:

2

2 4

2

4

2 3

We would expect it to return

0

0 4

0

4

0 3

def replace_x(t, x):

new_branches = [replace_x(b, x) for b in branches(t)]
if label(t) == x:

return tree(0, new_branches)
return tree(label(t), new_branches)

Here, we construct and return a new tree. First, we make a new list of branches
where each branch is the same as the previous branch but all occurrences of x have
been replaced with 0 (this is what the output of replace_x is defined to be.)

If the label of our tree is equal to x, we will additionally need to ”replace” our
current label with 0 in the tree we return. Otherwise, we can keep our previous label.

These two steps guarantee that each occurrence of x is replaced.

We do not need a base case here, as if we are at a leaf, the list comprehension
we use to create the new branches will evaluate to an empty list. Then we will either
return tree(0, []) or tree(label(t), []) as appropriate.

Page 5



CS 61A TUTORIAL 5: TREES AND MUTATION Page 6

4. Write a function, all_paths that takes in a tree, t, and returns a list of paths from
the root to each leaf. For example, if we called all_paths(t) on the following tree:

2

2 4

2 3

all_paths(t) would return [[2, 2], [2, 4, 2], [2, 4, 3]].

def all_paths(t):
paths = []
if ________________________________________

_______________________________________
else:

_______________________________________
___________________________________

_______________________________
return paths

def all_paths(t):
paths = []
if is_leaf(t):

paths.append([label(t)])
else:

for b in branches(t):
for path in all_paths(b):

paths.append([label(t)] + path)
return paths

Explanation:
We begin by making a list to contain all the paths.
If the tree is a leaf, the root is a leaf, so the only path is [label(t)].
Otherwise, for each branch in the tree, we can use recursion to generate all the paths
that extend from that branch to a leaf.
Finally, we combine the root label with each branch-starting path to make it a path
from the root to a leaf.
Append every path like this to paths, and we have created a list of all paths!

Page 6



CS 61A TUTORIAL 5: TREES AND MUTATION Page 7

Page 7



CS 61A TUTORIAL 5: TREES AND MUTATION Page 8

2 Mutation

Let’s imagine it’s your first year at Cal, and you have signed up for your first classes!
>>> classes = ["CS61A", "Math 53", "R1B", "Chem 1A"]
>>> classes_ptr = classes
>>> classes_copy = classes[:]

After a few weeks, you realize that you cannot keep up with the workload and you need
to drop a class. You’ve chosen to drop Chem 1A. Based on what we know so far, to
change our classes list, we would have to create a new list with all the same elements
as the original list except for Chem 1A. But that is silly, since all we really need to do is
remove the Chem 1A element from our list.

We can fix this issue with list mutation. In Python, some objects, such as lists and dictio-
naries, are mutable, meaning that their contents or state can be changed over the course
of program execution. Other objects, such as numeric types, tuples, and strings are im-
mutable, meaning they cannot be changed once they are created. Therefore, instead of
creating a new list, we can just call classes.pop(), which removes the last element from
the list.

Page 8



CS 61A TUTORIAL 5: TREES AND MUTATION Page 9

>>> classes.pop() # pop returns whatever item it removed
"Chem 1A"

List methods that mutate:

• append(el): Adds el to the end of the list

• extend(lst): Extends the list by concatenating it with lst

• insert(i, el): Insert el at index i (does not replace element but adds a new one)

• remove(el): Removes the first occurrence of el in list, otherwise errors

• pop(i): Removes and returns the element at index i, if you do not include an index
it pops the last element of the list

Ways to copy: list splicing ([start:end:step]), list(...)

Page 9



CS 61A TUTORIAL 5: TREES AND MUTATION Page 10

1. What would Python display? If an error occurs, write ”Error”. If a function is dis-
played, write ”Function”. If nothing is returned, write ”Nothing”.

>>> a = [1, 2]
>>> b = a
>>> print(a.append([3, 4]))

None

>>> a

[1, 2, [3, 4]]

>>> b

[1, 2, [3, 4]]

>>> c = a[:]
>>> a[0] = 5
>>> a[2][0] = 6
>>> c

[1, 2, [6, 4]]

>>> a.extend([7, 8])
>>> a += [9]
>>> a += 10

TypeError: 'int' object is not iterable

>>> a

[5, 2, [6, 4], 7, 8, 9]

>>> print(c.pop(), c)

[6, 4] [1, 2]

Page 10



CS 61A TUTORIAL 5: TREES AND MUTATION Page 11

2. Given a list of lists lst_of_lsts and some element elem, append elem to every list
in lst_of_lsts.

def append_to_all(lst_of_lsts, elem):
"""
>>> l = [[1, 0, 5], [2, 6, 4], [8, 3]]
>>> append_to_all(l, 7)
>>> l
[[1, 0, 5, 7], [2, 6, 4, 7], [8, 3, 7]]
"""

for lst in lst_of_lsts:
lst.append(elem)

Page 11



CS 61A TUTORIAL 5: TREES AND MUTATION Page 12

3. (Reverse Environment Diagram) Fill in each blank in the code example below so that
its environment diagram matches the image. You should make your answers for each
part as simple as possible. There may be more than one correct answer.

def launch(fireworks):
sky = fireworks
sky.extend(____1____)
fireworks.append(____2____)
clouds = ____3____

launch(["Star", "Flower"])

(a) Write an expression that could complete blank 1.

fireworks OR sky

(b) Write an expression that could complete blank 2.

["Sparkles"]

(c) Write an expression that could complete blank 3.

fireworks[4] OR sky[4]

Page 12



CS 61A TUTORIAL 5: TREES AND MUTATION Page 13

3 Challenge Problems

1. Given some list lst, possibly a deep list (i.e. lists inside of lists), mutate lst to have
the accumulated sum of all elements so far in the list. If there is a nested list, mutate
it to similarly reflect the accumulated sum of all elements so far in the nested list.
Return the total sum of the original lst.

Hint: The isinstance function returns True for isinstance(l, list) if l is a
list and False otherwise.

def accumulate(lst):
"""
>>> l = [1, 5, 13, 4]
>>> accumulate(l)
23
>>> l
[1, 6, 19, 23]
>>> deep_l = [3, 7, [2, 5, 6], 9]
>>> accumulate(deep_l)
32
>>> deep_l
[3, 10, [2, 7, 13], 32]
"""
sum_so_far = 0
for ________________________________________:

________________________________________
if isinstance(___________________, list):

inside = ___________________________
____________________________________

else:
____________________________________
____________________________________

return ___________________________________

Page 13



CS 61A TUTORIAL 5: TREES AND MUTATION Page 14

def accumulate(lst):
sum_so_far = 0
for i in range(len(lst)):

item = lst[i]
if isinstance(item, list):

inside = accumulate(item)
sum_so_far += inside

else:
sum_so_far += item
lst[i] = sum_so_far

return sum_so_far

Page 14



CS 61A TUTORIAL 5: TREES AND MUTATION Page 15

2. Challenge: Write a function that returns true only if there exists a path from root to
leaf that contains at least n instances of elem in a tree t.

def contains_n(elem, n, t):
"""
>>> t1 = tree(1, [tree(1, [tree(2)])])
>>> contains(1, 2, t1)
True
>>> contains(2, 2, t1)
False
>>> contains(2, 1, t1)
True
>>> t2 = tree(1, [tree(2), tree(1, [tree(1), tree(2)])

])
>>> contains(1, 3, t2)
True
>>> contains(2, 2, t2) # Not on a path
False
"""
if n == 0:

return True

elif ___________________________________________:

return _____________________________________

elif label(t) == elem:

return _____________________________________

else:

return _____________________________________

if n == 0:
return True

elif is_leaf(t):
return n == 1 and label(t) == elem

elif label(t) == elem:
return True in [contains_n(elem, n - 1, b) for b in

branches(t)]

Page 15



CS 61A TUTORIAL 5: TREES AND MUTATION Page 16

else:
return True in [contains_n(elem, n, b) for b in

branches(t)]

Page 16


