
TREES AND MUTATION

CS 61A

July 9, 2021

1 Trees

What are trees?

A tree has a root label and a sequence of branches. Each branch of a tree is a tree. A tree
with no branches is called a leaf. Any tree contained within a tree is called a sub-tree of
that tree (such as a branch of a branch). The root of each sub-tree of a tree is called a node
in that tree. Trees are a recursive data abstraction, since trees have branches that are trees
themselves.

Because of this, it often makes sense to solve tree problems using recursion:

1. Base case is often when we reach a leaf node

2. Recursive case is often when we still need to recurse down, e.g. we haven’t hit a
leaf yet. Recursive calls need to break the problem into smaller parts, which for trees
often means passing in each branch as an input.

When trying to understand and solve tree problems, it is helpful to draw out the tree.

Things to remember:

def tree(label, branches=[]):
return [label] + list(branches)

def label(tree):
return tree[0]

def branches(tree):
return tree[1:] #returns a list of branches

1



CS 61A TUTORIAL 5: TREES AND MUTATION Page 2
Note: You don’t have to worry too much about how trees are actually represented as lists–
that’s the power of abstraction at work!

As shown above, the tree constructor takes in a label and a list of branches (which are
themselves trees).

tree(4,
[tree(5),
tree(2,

[tree(2),
tree(1)]),

tree(1),
tree(8,

[tree(4)])])

This creates a tree that looks like this:

4

5 2

2 1

1 8

4

Page 2



CS 61A TUTORIAL 5: TREES AND MUTATION Page 3

1. Let t be the tree depicted above. What do the following expressions evaluate to? If
the expressions evaluates to a tree, format your answer as tree(... , ...). (Note
that the Python interpreter wouldn’t display trees like this. This is just so you think
about trees as an ADT instead of worrying about their implementation.)

>>> label(t)

>>> branches(t)[1]

>>> branches(branches(t)[1])[1]

Page 3



CS 61A TUTORIAL 5: TREES AND MUTATION Page 4

2. Write the function sum_of_nodes which takes in a tree and outputs the sum of all
the elements in the tree.

def sum_of_nodes(t):
"""
>>> t = tree(...) # Tree from question 1.
>>> sum_of_nodes(t) # 4 + 5 + 2 + 1 + 8 + 2 + 1 + 4 = 27
27
"""

Page 4



CS 61A TUTORIAL 5: TREES AND MUTATION Page 5

3. Write a function, replace_x that takes in a tree, t, and returns a new tree with all
labels x replaced with 0.

For example, if we called replace_x(t, 2) on the following tree:

2

2 4

2

4

2 3

We would expect it to return

0

0 4

0

4

0 3

def replace_x(t, x):

Page 5



CS 61A TUTORIAL 5: TREES AND MUTATION Page 6

4. Write a function, all_paths that takes in a tree, t, and returns a list of paths from
the root to each leaf. For example, if we called all_paths(t) on the following tree:

2

2 4

2 3

all_paths(t) would return [[2, 2], [2, 4, 2], [2, 4, 3]].

def all_paths(t):
paths = []
if ________________________________________

_______________________________________
else:

_______________________________________
___________________________________

_______________________________
return paths

Page 6



CS 61A TUTORIAL 5: TREES AND MUTATION Page 7

2 Mutation

Let’s imagine it’s your first year at Cal, and you have signed up for your first classes!
>>> classes = ["CS61A", "Math 53", "R1B", "Chem 1A"]
>>> classes_ptr = classes
>>> classes_copy = classes[:]

After a few weeks, you realize that you cannot keep up with the workload and you need
to drop a class. You’ve chosen to drop Chem 1A. Based on what we know so far, to
change our classes list, we would have to create a new list with all the same elements
as the original list except for Chem 1A. But that is silly, since all we really need to do is
remove the Chem 1A element from our list.

We can fix this issue with list mutation. In Python, some objects, such as lists and dictio-
naries, are mutable, meaning that their contents or state can be changed over the course
of program execution. Other objects, such as numeric types, tuples, and strings are im-
mutable, meaning they cannot be changed once they are created. Therefore, instead of
creating a new list, we can just call classes.pop(), which removes the last element from
the list.

Page 7



CS 61A TUTORIAL 5: TREES AND MUTATION Page 8

>>> classes.pop() # pop returns whatever item it removed
"Chem 1A"

List methods that mutate:

• append(el): Adds el to the end of the list

• extend(lst): Extends the list by concatenating it with lst

• insert(i, el): Insert el at index i (does not replace element but adds a new one)

• remove(el): Removes the first occurrence of el in list, otherwise errors

• pop(i): Removes and returns the element at index i, if you do not include an index
it pops the last element of the list

Ways to copy: list splicing ([start:end:step]), list(...)

Page 8



CS 61A TUTORIAL 5: TREES AND MUTATION Page 9

1. What would Python display? If an error occurs, write ”Error”. If a function is dis-
played, write ”Function”. If nothing is returned, write ”Nothing”.

>>> a = [1, 2]
>>> b = a
>>> print(a.append([3, 4]))

>>> a

>>> b

>>> c = a[:]
>>> a[0] = 5
>>> a[2][0] = 6
>>> c

>>> a.extend([7, 8])
>>> a += [9]
>>> a += 10

>>> a

>>> print(c.pop(), c)

Page 9



CS 61A TUTORIAL 5: TREES AND MUTATION Page 10

2. Given a list of lists lst_of_lsts and some element elem, append elem to every list
in lst_of_lsts.

def append_to_all(lst_of_lsts, elem):
"""
>>> l = [[1, 0, 5], [2, 6, 4], [8, 3]]
>>> append_to_all(l, 7)
>>> l
[[1, 0, 5, 7], [2, 6, 4, 7], [8, 3, 7]]
"""

Page 10



CS 61A TUTORIAL 5: TREES AND MUTATION Page 11

3. (Reverse Environment Diagram) Fill in each blank in the code example below so that
its environment diagram matches the image. You should make your answers for each
part as simple as possible. There may be more than one correct answer.

def launch(fireworks):
sky = fireworks
sky.extend(____1____)
fireworks.append(____2____)
clouds = ____3____

launch(["Star", "Flower"])

Page 11



CS 61A TUTORIAL 5: TREES AND MUTATION Page 12

(a) Write an expression that could complete blank 1.

(b) Write an expression that could complete blank 2.

(c) Write an expression that could complete blank 3.

Page 12



CS 61A TUTORIAL 5: TREES AND MUTATION Page 13

3 Challenge Problems

1. Given some list lst, possibly a deep list (i.e. lists inside of lists), mutate lst to have
the accumulated sum of all elements so far in the list. If there is a nested list, mutate
it to similarly reflect the accumulated sum of all elements so far in the nested list.
Return the total sum of the original lst.

Hint: The isinstance function returns True for isinstance(l, list) if l is a
list and False otherwise.

def accumulate(lst):
"""
>>> l = [1, 5, 13, 4]
>>> accumulate(l)
23
>>> l
[1, 6, 19, 23]
>>> deep_l = [3, 7, [2, 5, 6], 9]
>>> accumulate(deep_l)
32
>>> deep_l
[3, 10, [2, 7, 13], 32]
"""
sum_so_far = 0
for ________________________________________:

________________________________________
if isinstance(___________________, list):

inside = ___________________________
____________________________________

else:
____________________________________
____________________________________

return ___________________________________

Page 13



CS 61A TUTORIAL 5: TREES AND MUTATION Page 14

2. Challenge: Write a function that returns true only if there exists a path from root to
leaf that contains at least n instances of elem in a tree t.

def contains_n(elem, n, t):
"""
>>> t1 = tree(1, [tree(1, [tree(2)])])
>>> contains(1, 2, t1)
True
>>> contains(2, 2, t1)
False
>>> contains(2, 1, t1)
True
>>> t2 = tree(1, [tree(2), tree(1, [tree(1), tree(2)])

])
>>> contains(1, 3, t2)
True
>>> contains(2, 2, t2) # Not on a path
False
"""
if n == 0:

return True

elif ___________________________________________:

return _____________________________________

elif label(t) == elem:

return _____________________________________

else:

return _____________________________________

Page 14


