
PYTHON LISTS, DICTIONARIES, AND DATA
ABSTRACTION Solutions

CS 61A

July 7, 2021

1 Lists

Lists Introduction:

Lists are a type of sequence, which is to say they’re ordered collections of values that have
both a length and the ability to select elements.

>>> lst = [1, False, [2, 3], 4] # a list can contain anything
>>> len(lst)
4
>>> lst[0] # Indexing starts at 0
1
>>> lst[4] # Indexing ends at len(lst) - 1
Error: list index out of range

We can iterate over lists using their index, or iterate over elements directly

for index in range(len(lst)):
do things

for item in lst:
do things

List comprehensions are a useful way to iterate over lists when your desired result is a
list.
new_list2 = [<expression> for <element> in <sequence> if <

condition>]

We can use list slicing to create a copy of a certain portion or all of a list.

1

CS 61A TUTORIAL 4: PYTHON LISTS, DICTIONARIES, AND DATA ABSTRACTION Page 2

new_list = lst[<starting index>:<ending index>]
copy = lst[:]

1. What would Python display? Draw box-and-pointer diagrams for the following:

>>> a = [1, 2, 3]
>>> a

[1, 2, 3]

>>> a[2]

3

>>> b = a
>>> a = a + [4, [5, 6]]
>>> a

[1, 2, 3, 4, [5, 6]]

>>> b

[1, 2, 3]

>>> c = a
>>> a = [4, 5]
>>> a

[4, 5]

>>> c

[1, 2, 3, 4, [5, 6]]

Page 2

CS 61A TUTORIAL 4: PYTHON LISTS, DICTIONARIES, AND DATA ABSTRACTION Page 3

>>> d = c[3:5]
>>> c[3] = 9
>>> d

[4, [5, 6]]

>>> c[4][0] = 7
>>> d

[4, [7, 6]]

>>> c[4] = 10
>>> d

[4, [7, 6]]

>>> c

[1, 2, 3, 9, 10]

2. Draw the environment diagram that results from running the code.

def reverse(lst):
if len(lst) <= 1:

return lst
return reverse(lst[1:]) + [lst[0]]

lst = [1, [2, 3], 4]
rev = reverse(lst)

https://goo.gl/6vPeX9

Page 3

https://goo.gl/6vPeX9

CS 61A TUTORIAL 4: PYTHON LISTS, DICTIONARIES, AND DATA ABSTRACTION Page 4

3. Write a function that takes in a list nums and returns a new list with only the primes
from nums. Assume that is_prime(n) is defined. You may use a while loop, a for
loop, or a list comprehension.

def all_primes(nums):

result = []
for i in nums:

if is_prime(i):
result = result + [i]

return result

List comprehension:
return [x for x in nums if is_prime(x)]

4. Write a list comprehension that accomplishes each of the following tasks.

(a) Square all the elements of a given list, lst.

[x ** 2 for x in lst]

(b) Compute the dot product of two lists lst1 and lst2. Hint: The dot product is
defined as lst1[0] · lst2[0] + lst1[1] · lst2[1] + . . . + lst1[n] · lst2[n]. The Python zip
function may be useful here.

sum([x * y for x, y in zip(lst1, lst2)])

(c) Return a list of lists such that a = [[0], [0, 1], [0, 1, 2], [0, 1, 2,
3], [0, 1, 2, 3, 4]].

a = [[x for x in range(y)] for y in range(1, 6)]

(d) Return the same list as above, except now excluding every instance of the number
2: b = [[0], [0, 1], [0, 1], [0, 1, 3], [0, 1, 3, 4]]).

b = [[x for x in range(y) if x != 2] for y in range(1, 6)]

Page 4

CS 61A TUTORIAL 4: PYTHON LISTS, DICTIONARIES, AND DATA ABSTRACTION Page 5

2 Dictionaries

Dictionaries are data structures that map keys to values. In Python, the key-value pairs
in a dictionary are unordered.

1. Write a function replace all that replaces all occurences of x as a value (not a key)
in d with y.

def replace_all(d, x, y):
"""Replace all occurrences of x as a value (not a key) in

d with y.
>>> d = {3: '3', 'foo': 2, 'bar': 3, 'garply': 3, 'xyzzy':

99}
>>> replace_all(d, 3, 'poof')
>>> d == {3: '3', 'foo': 2, 'bar': 'poof', 'garply': 'poof

', 'xyzzy': 99}
True
"""

for key in d:
if d[key] == x:

d[key] = y

Page 5

CS 61A TUTORIAL 4: PYTHON LISTS, DICTIONARIES, AND DATA ABSTRACTION Page 6

2. Write a function counter that takes in an input string, message, and returns a dic-
tionary that maps each unique word in message to the number of times it appears.

def counter(message):
""" Returns a dictionary of each word in message mapped
to the number of times it appears in the input string.
>>> x = counter('to be or not to be')
>>> x['to']
2
>>> x['be']
2
>>> x['not']
1
>>> y = counter('run forrest run')
>>> y['run']
2
>>> y['forrest']
1
"""
word_list = message.split() # .split() returns a list of

the words in the string. Try printing it!

result_dict = {}
for word in word_list:

if word in result_dict:
result_dict[word] += 1

else:
result_dict[word] = 1

return result_dict

Page 6

CS 61A TUTORIAL 4: PYTHON LISTS, DICTIONARIES, AND DATA ABSTRACTION Page 7

3 Abstraction

Data Abstraction Overview:

Abstraction allows us to create and access different types of data through a controlled,
restricted programming interface, hiding implementation details and encouraging pro-
grammers to focus on how data is used, rather than how data is organized. The two
fundamental components of a programming interface are a constructor and selectors.

1. Constructor: The interface that creates a piece of data; e.g. calling c = car("Tesla")
creates a new car object and assigns it to the variable c.

2. Selectors: The interface by which we access attributes of a piece of data; e.g. calling
get_brand(c) should return "Tesla".

Through constructors and selectors, a data type can hide its implementation, and a pro-
grammer doesn’t need to know its implementation to use it.

1. The following is an Abstract Data Type (ADT) for elephants. Each elephant keeps
track of its name, age, and whether or not it can fly. Given our provided constructor,
fill out the selectors:

def elephant(name, age, can_fly):
"""
Takes in a string name, an int age, and a boolean can_fly.
Constructs an elephant with these attributes.
>>> dumbo = elephant("Dumbo", 10, True)
>>> elephant_name(dumbo)
"Dumbo"
>>> elephant_age(dumbo)
10
>>> elephant_can_fly(dumbo)
True
"""
return [name, age, can_fly]

def elephant_name(e):

return e[0]

def elephant_age(e):

return e[1]

Page 7

CS 61A TUTORIAL 4: PYTHON LISTS, DICTIONARIES, AND DATA ABSTRACTION Page 8

def elephant_can_fly(e):

return e[2]

2. This function returns the correct result, but there’s something wrong about its imple-
mentation. How do we fix it?

def elephant_roster(elephants):
"""
Takes in a list of elephants and returns a list of their

names.
"""
return [elephant[0] for elephant in elephants]

elephant[0] is a Data Abstraction Violation (DAV). We should use a selector in-
stead. The corrected function looks like:
def elephant_roster(elephants):

return [elephant_name(elephant) for elephant in elephants]

3. Fill out the following constructor for the given selectors.

def elephant(name, age, can_fly):

return [[name, age], can_fly]

def elephant_name(e):
return e[0][0]

def elephant_age(e):
return e[0][1]

def elephant_can_fly(e):
return e[1]

4. How can we write the fixed elephant_roster function for the constructors and
selectors in the previous question?

No change is necessary to fix elephant_roster since using the elephant selectors
“protects” the roster from constructor definition changes.

Page 8

CS 61A TUTORIAL 4: PYTHON LISTS, DICTIONARIES, AND DATA ABSTRACTION Page 9

5. (Optional) Fill out the following constructor for the given selectors.

def elephant(name, age, can_fly):
"""
>>> alex = elephant("Alex Kassil", 22, False)
>>> elephant_name(alex)
"Alex Kassil"
>>> elephant_age(alex)
22
>>> elephant_can_fly(alex)
False
>> alex("size")
"Breaking abstraction barrier!"
"""
def select(command):

if command == "name":
return name

elif command == "age":
return age

elif command == "can_fly":
return can_fly

return "Breaking abstraction barrier!"

return select

def elephant_name(e):
return e("name")

def elephant_age(e):
return e("age")

def elephant_can_fly(e):
return e("can_fly")

Page 9

