
RECURSION AND TREE RECURSION

CS 61A

July 2, 2021

1 Recursion

There are three steps to writing a recursive function:

1. Create base case(s)

2. Reduce your problem to a smaller subproblem and call your function recursively on
the smaller subproblem

3. Figure out how to get from the smaller subproblem back to the larger problem

Real World Analogy for Recursion

Imagine that you’re in line for boba, but the line is really long, so you want to know what
position you’re in. You decide to ask the person in front of you how many people are in
front of them. That way, you can take their response and add 1 to it. Now, the person in
front of you is faced with the same problem that you were trying to solve, with one less
person in front of them than you. They decide to take the same approach that you did,
by asking the person in front of them. This continues until the very first person in line is
asked. At this point, the person at the front knows that there are 0 people in front of them,
so they can tell the person behind them that there are 0 people in front. Now, the second
person can figure out that there is 1 person in front of them, and can relay that back to the
person behind them, and so on, until the answer reaches you.

Looking at this example, we see that we have broken down the problem of ”how many
people are there in front of me?” to 1 + ”how many people are there in front of the person
in front of me”? This problem will terminate with the person at the front of the line (with
0 people in front of them). Putting this into more formal terms, we are breaking down the
problem into a recurrence relationship, and the termination case is called the base case.

1



CS 61A TUTORIAL 3: RECURSION AND TREE RECURSION Page 2

1. What is wrong with the following function? How can we fix it?

def factorial(n):
return n * factorial(n)

2. Write a function is_sorted that takes in an integer n and returns true if the digits of
that number are nondecreasing from right to left.

def is_sorted(n):
"""
>>> is_sorted(2)
True
>>> is_sorted(22222)
True
>>> is_sorted(9876543210)
True
>>> is_sorted(9087654321)
False
"""

Page 2



CS 61A TUTORIAL 3: RECURSION AND TREE RECURSION Page 3

3. Fill in collapse, which takes in a non-negative integer n and returns the number
resulting from removing all digits that are equal to an adjacent digit, i.e. the number
has no adjacent digits that are the same.

def collapse(n):
"""
>>> collapse(12234441)
12341
>>> collapse(11200000013333)
12013
"""
rest, last = n // 10, n % 10

if ___________________________________:

____________________________________

elif _________________________________:

____________________________________
else:

____________________________________

Page 3



CS 61A TUTORIAL 3: RECURSION AND TREE RECURSION Page 4

2 Tree Recursion

Tree Recursion vs Recursion

In most recursive problems we’ve seen so far, the solution function contains only one call
to itself. However, some problems will require multiple recursive calls – we colloquially
call this type of recursion ”tree recursion,” since the propagation of function frames re-
minds us of the branches of a tree. ”Tree recursive” or not, these problems are still solved
the same way as those requiring a single function call: a base case, the recursive leap of
faith on a subproblem, and solving the original problem with the solution to our sub-
problems. The difference? We simply may need to use multiple subproblems to solve our
original problem.

Tree recursion will often be needed when solving counting problems (how many ways
are there of doing something?) and optimization problems (what is the maximum or
minimum number of ways of doing something?), but remember there are all sorts of
problems that may need multiple recursive calls! Always come back to the recursive leap
of faith.

Page 4



CS 61A TUTORIAL 3: RECURSION AND TREE RECURSION Page 5

1. Mario needs to jump over a series of Piranha plants, represented as a string of 0’s and
1’s. Mario only moves forward and can either step (move forward one space) or jump
(move forward two spaces) from each position. How many different ways can Mario
traverse a level without stepping or jumping into a Piranha plant? Assume that every
level begins with a 1 (where Mario starts) and ends with a 1 (where Mario must end
up).

Hint: Does it matter whether Mario goes from left to right or right to left? Which one is easier
to check?

def mario_number(level):
"""
Return the number of ways that Mario can traverse the
level, where Mario can either hop by one digit or two
digits each turn. A level is defined as being an integer
with digits where a 1 is something Mario can step on and
0 is something Mario cannot step on.
>>> mario_number(10101)
1
>>> mario_number(11101)
2
>>> mario_number(100101)
0
"""
if _______________________:

______________________

elif _____________________:

______________________

else:

___________________________________________________

Page 5



CS 61A TUTORIAL 3: RECURSION AND TREE RECURSION Page 6

2. In an alternate universe, 61A software is not that good (inconceivable!). Laryn is in
charge of assigning students to discussion sections, but sections.cs61a.org only knows
how to list sections with either m or n number of students (the two most popular
sizes). Given a total number of students, can Laryn create sections and not have
any leftover students? Return true if they can, false otherwise.

def has_sum(total, n, m):
"""
>>> has_sum(1, 3, 5)
False
>>> has_sum(5, 3, 5) # 0 * 3 + 1 * 5 = 5
True
>>> has_sum(11, 3, 5) # 2 * 3 + 1 * 5 = 11
True
>>> has_sum(61, 11, 15) # 61 is a prime number and can

't be divided!
False
"""
if

____________________________________________________
:

return ____________________________________

elif
__________________________________________________:

return ____________________________________

return
________________________________________________

Page 6



CS 61A TUTORIAL 3: RECURSION AND TREE RECURSION Page 7

3. Realizing the need for improvement, Laryn has recruited you to help them make 61A
sections more flexible! Laryn would like discussion sections to have 20 ≤ x ≤ 30
students each, and tutoring sections to have 6 ≤ y ≤ 8 students. Additionally, it’s
okay to have up to upper total slots, as long as we have at least lower amount to
accomodate all students. Is it possible to assign each student a section? (Note: In
this alternate universe, students can choose either a tutoring section or a discussion
section, but not both.)

def sum_range(lower, upper):
"""
>>> sum_range(25, 30) # Everyone can go into one

discussion section
True
>>> sum_range(9, 10) # If we make a tutoring section,

there will be 1-4 extra students
False
>>> sum_range(56, 64) # 2 discussion sections, 2

discussions 1 tutoring section, etc. all work
True
"""
def discussions(pmin, pmax):

if
________________________________________________
:

return ____________________________________

elif
______________________________________________:

return ____________________________________

return
____________________________________________

return discussions(0, 0)

Page 7



CS 61A TUTORIAL 3: RECURSION AND TREE RECURSION Page 8

Page 8


