
CS 61A Linked Lists, Efficiency, Mutable Trees
Spring 2023 Discussion 9: March 22, 2023

Linked Lists
There are many different implementations of sequences in Python. Today, we’ll explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value and the rest of the linked list.

To check if a linked list is an empty linked list, compare it against the class attribute Link.empty:

if link is Link.empty:
print('This linked list is empty!')

else:
print('This linked list is not empty!')

You can find an implementation of the Link class below:

class Link:
"""A linked list."""
empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest:

rest_repr = ', ' + repr(self.rest)
else:

rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'

def __str__(self):
string = '<'
while self.rest is not Link.empty:

string += str(self.first) + ' '
self = self.rest

return string + str(self.first) + '>'

2 Linked Lists, Efficiency, Mutable Trees

Q1: WWPD: Linked Lists

What would Python display?

Note: If you get stuck, try drawing out the box-and-pointer diagram for the linked list or running examples
in 61A Code.

>>> link = Link(1, Link(2, Link(3)))
>>> link.first

>>> link.rest.first

>>> link.rest.rest.rest is Link.empty

>>> link.rest = link.rest.rest
>>> link.rest.first

>>> link = Link(1)
>>> link.rest = link
>>> link.rest.rest.rest.rest.first

>>> link = Link(2, Link(3, Link(4)))
>>> link2 = Link(1, link)
>>> link2.first

>>> link2.rest.first

>>> link = Link(1000, 2000)

>>> link = Link(1000, Link())

>>> link = Link(Link("Hello"), Link(2))
>>> link.first

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Efficiency, Mutable Trees 3

>>> link = Link(Link("Hello"), Link(2))
>>> link.first.rest is Link.Empty

>>> link = Link(Link("Hello"), Link(2))
>>> link.rest is Link.Empty

Q2: Convert Link

Write a function convert_link that takes in a linked list and returns the sequence as a Python list. You may assume
that the input list is shallow; that is none of the elements is another linked list.

Try to find both an iterative and recursive solution for this problem!

Challenge: You may NOT assume that the input list is shallow, and we still want to return a flattened
Python list as our output. Challenge Hint: Use the type built-in.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Linked Lists, Efficiency, Mutable Trees

def convert_link(link):
"""Takes a linked list and returns a Python list with the same elements.

>>> link = Link(1, Link(2, Link(3, Link(4))))
>>> convert_link(link)
[1, 2, 3, 4]
>>> convert_link(Link.empty)
[]
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Efficiency, Mutable Trees 5

Q3: Duplicate Link

Write a function duplicate_link that takes in a linked list link and a value. duplicate_link will mutate link
such that if there is a linked list node that has a first equal to value, that node will be duplicated. Note that you
should be mutating the original link list link; you will need to create new Links, but you should not be returning a
new linked list.

Note: In order to insert a link into a linked list, you need to modify the .rest of certain links. We
encourage you to draw out a doctest to visualize!

def duplicate_link(link, val):
"""Mutates `link` such that if there is a linked list
node that has a first equal to value, that node will
be duplicated. Note that you should be mutating the
original link list.

>>> x = Link(5, Link(4, Link(3)))
>>> duplicate_link(x, 5)
>>> x
Link(5, Link(5, Link(4, Link(3))))
>>> y = Link(2, Link(4, Link(6, Link(8))))
>>> duplicate_link(y, 10)
>>> y
Link(2, Link(4, Link(6, Link(8))))
>>> z = Link(1, Link(2, (Link(2, Link(3)))))
>>> duplicate_link(z, 2) #ensures that back to back links with val are both
duplicated
>>> z
Link(1, Link(2, Link(2, Link(2, Link(2, Link(3))))))
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Linked Lists, Efficiency, Mutable Trees

Q4: Multiply Links

Write a function that takes in a Python list of linked lists and multiplies them element-wise. It should return a new
linked list.

If not all of the Link objects are of equal length, return a linked list whose length is that of the shortest linked list
given. You may assume the Link objects are shallow linked lists, and that lst_of_lnks contains at least one linked
list.

def multiply_lnks(lst_of_lnks):
"""
>>> a = Link(2, Link(3, Link(5)))
>>> b = Link(6, Link(4, Link(2)))
>>> c = Link(4, Link(1, Link(0, Link(2))))
>>> p = multiply_lnks([a, b, c])
>>> p.first
48
>>> p.rest.first
12
>>> p.rest.rest.rest is Link.empty
True
"""
Implementation Note: you might not need all lines in this skeleton code
___________________ = ___________
for _______________________________________:

if __:

__
__

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Efficiency, Mutable Trees 7

Q5: Flip Two

Write a recursive function flip_two that takes as input a linked list s and mutates s so that every pair is flipped.

def flip_two(s):
"""
>>> one_lnk = Link(1)
>>> flip_two(one_lnk)
>>> one_lnk
Link(1)
>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> flip_two(lnk)
>>> lnk
Link(2, Link(1, Link(4, Link(3, Link(5)))))
"""
"*** YOUR CODE HERE ***"

For an extra challenge, try writing out an iterative approach as well below!
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Linked Lists, Efficiency, Mutable Trees

Efficiency
When we talk about the efficiency of a function, we are often interested in the following: as the size of the input
grows, how does the runtime of the function change? And what do we mean by runtime?

Example 1: square(1) requires one primitive operation: multiplication. square(100) also requires one. No matter
what input n we pass into square, it always takes a constant number of operations (1). In other words, this function
has a runtime complexity of Θ(1).

As an illustration, check out the table below:

input function call return value operations

1 square(1) 1*1 1
2 square(2) 2*2 1
… … … …
100 square(100) 100*100 1
… … … …
n square(n) n*n 1

Example 2: factorial(1) requires one multiplication, but factorial(100) requires 100 multiplications. As we
increase the input size of n, the runtime (number of operations) increases linearly proportional to the input. In
other words, this function has a runtime complexity of Θ(n).

As an illustration, check out the table below:

input function call return value operations

1 factorial(1) 1*1 1
2 factorial(2) 2*1*1 2
… … … …
100 factorial(100) 100*99*…*1*1 100
… … … …
n factorial(n) n*(n-1)*…*1*1 n

Example 3: Consider the following function: def bar(n): for a in range(n): for b in range(n): print(a,b)

bar(1) requires 1 print statements, while bar(100) requires 100*100 = 10000 print statements (each time a in-
crements, we have 100 print statements due to the inner for loop). Thus, the runtime increases quadratically
proportional to the input. In other words, this function has a runtime complexity of Θ(n^2).

input function call operations (prints)

1 bar(1) 1
2 bar(2) 4
… … …
100 bar(100) 10000
… … …
n bar(n) n^2

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Efficiency, Mutable Trees 9

Example 4: Consder the following function: def rec(n): if n == 0: return 1 else: return rec(n - 1) + rec(n - 1)

rec(1) requires one addition, as it returns rec(0) + rec(0), and rec(0) hits the base case and requires no further
additions. but rec(4) requires 2^4 - 1 = 15 additions. To further understand the intuition, we can take a look at
the recurisve tree below. To get rec(4), we need one addition. We have two calls to rec(3), which each require one
addition, so this level needs two additions. Then we have four calls to rec(2), so this level requires four additions,
and so on down the tree. In total, this adds up to 1 + 2 + 4 + 8 = 15 additions.

Recursive Call Tree

As we increase the input size of n, the runtime (number of operations) increases exponentially proportional to the
input. In other words, this function has a runtime complexity of Θ(2^n).

As an illustration, check out the table below:

input function call return value operations

1 rec(1) 2 1
2 rec(2) 4 3
… … … …
10 rec(10) 1024 1023
… … … …
n rec(n) 2^n 2^n

Here are some general guidelines for finding the order of growth for the runtime of a function:

• If the function is recursive or iterative, you can subdivide the problem as seen above:
– Count the number of recursive calls/iterations that will be made in terms of input size n.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Linked Lists, Efficiency, Mutable Trees

– Find how much work is done per recursive call or iteration in terms of input size n.
– The answer is usually the product of the above two, but be sure to pay attention to control flow!

• If the function calls helper functions that are not constant-time, you need to take the runtime of the helper
functions into consideration.

• We can ignore constant factors. For example 1000000n and n steps are both linear.
• We can also ignore smaller factors. For example if h calls f and g, and f is Quadratic while g is linear, then h

is Quadratic.
• For the purposes of this class, we take a fairly coarse view of efficiency. All the problems we cover in this course

can be grouped as one of the following:
– Constant: the amount of time does not change based on the input size. Rule: n --> 2n means t --> t.
– Logarithmic: the amount of time changes based on the logarithm of the input size. Rule: n --> 2n means

t --> t + k.
– Linear: the amount of time changes with direct proportion to the size of the input. Rule: n --> 2n means

t --> 2t.
– Quadratic: the amount of time changes based on the square of the input size. Rule: n --> 2n means

t --> 4t.
– Exponential: the amount of time changes with a power of the input size. Rule: n --> n + 1 means

t --> 2t.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Efficiency, Mutable Trees 11

Q6: The First Order…of Growth

What is the efficiency of rey?

def rey(finn):
poe = 0
while finn >= 2:

poe += finn
finn = finn / 2

return

Choose one of:

• Constant
• Logarithmic
• Linear
• Quadratic
• Exponential
• None of these

What is the efficiency of mod_7?

def mod_7(n):
if n % 7 == 0:

return 0
else:

return 1 + mod_7(n - 1)

Choose one of:

• Constant
• Logarithmic
• Linear
• Quadratic
• Exponential
• None of these

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Linked Lists, Efficiency, Mutable Trees

Additional Practice: Trees
Q7: Find Paths

Hint: This question is similar to find_path on Discussion 05.

Define the procedure find_paths that, given a Tree t and an entry, returns a list of lists containing the nodes along
each path from the root of t to entry. You may return the paths in any order.

For instance, for the following tree tree_ex, find_paths should behave as specified in the function doctests.

def find_paths(t, entry):
"""
>>> tree_ex = Tree(2, [Tree(7, [Tree(3), Tree(6, [Tree(5), Tree(11)])]), Tree(1, [
Tree(5)])])
>>> find_paths(tree_ex, 5)
[[2, 7, 6, 5], [2, 1, 5]]
>>> find_paths(tree_ex, 12)
[]
"""

paths = []
if _____________________________:

for __________________________________:

_________________________:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://cs61a.org/disc/sol-disc05/#q4-find-path

	Linked Lists
	Q1: WWPD: Linked Lists
	Q2: Convert Link
	Q3: Duplicate Link
	Q4: Multiply Links
	Q5: Flip Two

	Efficiency
	Q6: The First Order…of Growth

	Additional Practice: Trees
	Q7: Find Paths

