
CS 61A Object-Oriented Programming
Spring 2023 Discussion 7: March 8, 2023

OOP
Object-oriented programming (OOP) is a programming paradigm that allows us to treat data as objects, like
we do in real life.

For example, consider the class Student. Each of you as individuals is an instance of this class.

Details that all CS 61A students have, such as name, are called instance variables. Every student has these
variables, but their values differ from student to student. A variable that is shared among all instances of Student
is known as a class variable. For example, the extension_days attribute is a class variable as it is a property of
all students.

All students are able to do homework, attend lecture, and go to office hours. When functions belong to a specific
object, they are called methods. In this case, these actions would be methods of Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance variable: a data attribute of an object, specific to an instance

• class variable: a data attribute of an object, shared by all instances of a class

• method: a bound function that may be called on all instances of a class

Instance variables, class variables, and methods are all considered attributes of an object.

2 Object-Oriented Programming

Q1: WWPD: Student OOP

Below we have defined the classes Professor and Student, implementing some of what was described above. Re-
member that Python passes the self argument implicitly to methods when calling the method directly on an object.

class Student:

extension_days = 3 # this is a class variable

def __init__(self, name, staff):
self.name = name # this is an instance variable
self.understanding = 0
staff.add_student(self)
print("Added", self.name)

def visit_office_hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class Professor:

def __init__(self, name):
self.name = name
self.students = {}

def add_student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

def grant_more_extension_days(self, student, days):
student.extension_days = days

What will the following lines output?

>>> callahan = Professor("Callahan")
>>> elle = Student("Elle", callahan)

Added Elle

>>> elle.visit_office_hours(callahan)

Thanks, Callahan

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming 3

>>> elle.visit_office_hours(Professor("Paulette"))

Thanks, Paulette

>>> elle.understanding

2

>>> [name for name in callahan.students]

[‘Elle’]

>>> x = Student("Vivian", Professor("Stromwell")).name

Added Vivian

>>> x

‘Vivian’

>>> [name for name in callahan.students]

[‘Elle’]

>>> elle.extension_days

3

>>> callahan.grant_more_extension_days(elle, 7)
>>> elle.extension_days

7

>>> Student.extension_days

3

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Object-Oriented Programming

Q2: Email

We would like to write three different classes (Server, Client, and Email) to simulate a system for sending and
receiving emails. A Server has a dictionary mapping client names to Client objects, and can both send Emails
to Clients in the Server and register new Clients. A Client can both compose emails (which first creates a new
Email object and then sends it to the recipient client through the server) and receive an email (which places an email
into the client’s inbox).

Emails will only be sent/received within the same server, so clients will always use the server they’re registered in to
send emails to other clients that are registered in the same rerver.

An example flow: A Client object (Client 1) composes an Email object with message "hello" with recipient
Client 2, which the Server routes to Client 2’s inbox.

Email example

To solve this problem, we’ll split the section into two halves (students on the left and students on the right):

• Everyone will implement the Email class together
• The first half (left) will implement the Server class
• The other half (right) will implement the Client class

Fill in the definitions below to finish the implementation!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming 5

class Email:
"""
Every email object has 3 instance attributes: the
message, the sender name, and the recipient name.
>>> email = Email('hello', 'Alice', 'Bob')
>>> email.msg
'hello'
>>> email.sender_name
'Alice'
>>> email.recipient_name
'Bob'
"""
def __init__(self, msg, sender_name, recipient_name):

self.msg = msg
self.sender_name = sender_name
self.recipient_name = recipient_name

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Object-Oriented Programming

class Server:
"""
Each Server has one instance attribute: clients (which
is a dictionary that associates client names with
client objects).
"""
def __init__(self):

self.clients = {}

def send(self, email):
"""
Take an email and put it in the inbox of the client
it is addressed to.
"""
client = self.clients[email.recipient_name]
client.receive(email)

def register_client(self, client, client_name):
"""
Takes a client object and client_name and adds them
to the clients instance attribute.
"""
self.clients[client_name] = client

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming 7

class Client:
"""
Every Client has three instance attributes: name (which is
used for addressing emails to the client), server
(which is used to send emails out to other clients), and
inbox (a list of all emails the client has received).

>>> s = Server()
>>> a = Client(s, 'Alice')
>>> b = Client(s, 'Bob')
>>> a.compose('Hello, World!', 'Bob')
>>> b.inbox[0].msg
'Hello, World!'
>>> a.compose('CS 61A Rocks!', 'Bob')
>>> len(b.inbox)
2
>>> b.inbox[1].msg
'CS 61A Rocks!'
"""
def __init__(self, server, name):

self.inbox = []
self.server = server
self.name = name
self.server.register_client(self, self.name)

def compose(self, msg, recipient_name):
"""Send an email with the given message msg to the given recipient client."""
email = Email(msg, self.name, recipient_name)
self.server.send(email)

def receive(self, email):
"""Take an email and add it to the inbox of this client."""
self.inbox.append(email)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Object-Oriented Programming

Q3: Keyboard

We’d like to create a Keyboard class that takes in an arbitrary number of Buttons and stores these Buttons in a
dictionary. The keys in the dictionary will be ints that represent the position on the Keyboard, and the values
will be the respective Button. Fill out the methods in the Keyboard class according to each description, using the
doctests as a reference for the behavior of a Keyboard.

Hint: You can iterate over *args as if it were a list.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming 9

class Button:
def __init__(self, pos, key):

self.pos = pos
self.key = key
self.times_pressed = 0

class Keyboard:
"""A Keyboard stores an arbitrary number of Buttons in a dictionary.
Each dictionary key is a Button's position, and each dictionary
value is the corresponding Button.
>>> b1, b2 = Button(5, "H"), Button(7, "I")
>>> k = Keyboard(b1, b2)
>>> k.buttons[5].key
'H'
>>> k.press(7)
'I'
>>> k.press(0) # No button at this position
''
>>> k.typing([5, 7])
'HI'
>>> k.typing([7, 5])
'IH'
>>> b1.times_pressed
2
>>> b2.times_pressed
3
"""
def __init__(self, *args):

self.buttons = {}
for button in args:

self.buttons[button.pos] = button

def press(self, pos):
"""Takes in a position of the button pressed, and
returns that button's output."""
if pos in self.buttons.keys():

b = self.buttons[pos]
b.times_pressed += 1
return b.key

return ''

def typing(self, typing_input):
"""Takes in a list of positions of buttons pressed, and
returns the total output."""
accumulate = ''
for pos in typing_input:

accumulate+=self.press(pos)
return accumulate

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Object-Oriented Programming

Q4: Relay

In a Math Olympiad style relay, team members solve questions while sitting in a line. Each team member’s answer
is calculated based on the answer from the team member sitting in front of them.

For example, suppose we have three team members, adder, adder2, and multiplier, with adder sitting at the
very front, adder2 in the middle, and multiplier at the end. When we call the relay_calculate method from
multiplier, we first apply the adder operation to the input x. Then, the answer from adder is passed into the
adder2 operation. Finally, the answer from adder2 is passed into the multiplier operation. The answer from
multiplier is our final answer.

Relay example

Additionally, each team member has a relay_history method, which uses the fact that each team member has an
instance variable history. relay_history returns a list of the answers given by each team member, and this is
updated each time we call relay_calculate.

Here are some examples of how the TeamMember class should behave:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming 11

>>> adder = TeamMember(lambda x: x + 1) # team member at front
>>> adder2 = TeamMember(lambda x: x + 2, adder) # team member 2
>>> multiplier = TeamMember(lambda x: x * 5, adder2) # team member 3
>>> adder.relay_history() # relay history starts off as empty
[]
>>> adder.relay_calculate(5) # 5 + 1
6
>>> adder2.relay_calculate(5) # (5 + 1) + 2
8
>>> multiplier.relay_calculate(5) # (((5 + 1) + 2) * 5)
40
>>> multiplier.relay_history() # history of answers from the most recent relay multiplier

participated in
[6, 8, 40]
>>> adder.relay_history()
[6]
>>> multiplier.relay_calculate(4) # (((4 + 1) + 2) * 5)
35
>>> multiplier.relay_history()
[5, 7, 35]
>>> adder.relay_history() # adder participated most recently in multiplier.

relay_calculate(4), where it gave the answer 5
[5]
>>> adder.relay_calculate(1)
2
>>> adder.relay_history() # adder participated most recently in adder.relay_calculate(1),

where it gave the answer 2
[2]
>>> multiplier.relay_history() # but the most relay multiplier participated in is still

multiplier.relay_calculate(4)
[5, 7, 35]

Fill in the definitions below to complete the implementation of the TeamMember class!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Object-Oriented Programming

class TeamMember:
def __init__(self, operation, prev_member=None):

"""
A TeamMember object is instantiated by taking in an `operation`
and a TeamMember object `prev_member`, which is the team member
who "sits in front of" this current team member. A TeamMember also
tracks a `history` list, which contains the answers given by
each individual team member.
"""
self.history = []
self.operation = operation
self.prev_member = prev_member

def relay_calculate(self, x):
"""
The relay_calculate method takes in a number `x` and performs a
relay by passing in `x` to the first team member's `operation`.
Then, that answer is passed to the next member's operation, etc. until
we get to the current TeamMember, in which case we return the
final answer, `result`.
"""
if not self.prev_member:

result = self.operation(x)
self.history = [result]

else:
prev_result = self.prev_member.relay_calculate(x)
result = self.operation(prev_result)
self.history = self.prev_member.history + [result]

return result
def relay_history(self):

"""
Returns a list of the answers given by each team member in the
most recent relay the current TeamMember has participated in.
"""
return self.history

Class Methods
Now we’ll try out another feature of Python classes: class methods. A method can be turned into a class method by
adding the classmethod decorator. Then, instead of receiving the instance as the first argument (self), the method
will receive the class itself (cls).

Class methods are commonly used to create “factory methods”: methods whose job is to construct and return a new
instance of the class.

For example, we can add a robo_factory class method to our Dog class that makes robo-dogs:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://docs.python.org/3/library/functions.html#classmethod

Object-Oriented Programming 13

class Dog:
def __init__(self, name, owner):

self.name = name
self.owner = owner

@classmethod
def robo_factory(cls, owner):

return cls("RoboDog", owner)

With other previously defined methods not written out

Then a call to Dog.robo_factory('Sally') would return a new Dog instance with the name “RoboDog” and owner
“Sally”.

Note that with the call above, we don’t’t have to explicitly pass in the Dog class as the cls argument, since Python
implicitly does that for us. We only have to pass in a value for owner. When the body of the Dog.robo_factory
is run, the line cls("RoboDog", owner) is equivalent to Dog("RoboDog", owner) (since cls is bound to the Dog
class), which creates the new Dog instance.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

14 Object-Oriented Programming

Q5: Own A Cat

Now implement the cat_creator method below, which takes in a string owner and creates a Cat named “[owner]’s
Cat”, where [owner] is replaced with the name in the owner string.

Hint: To place an apostrophe within a string, the entire string must be surrounded in double-quotes (i.e.
"DeNero's Dog")

class Cat:
def __init__(self, name, owner, lives=9):

self.is_alive = True
self.name = name
self.owner = owner
self.lives = lives

def talk(self):
return self.name + ' says meow!'

@classmethod
def cat_creator(cls, owner):

"""
Returns a new instance of a Cat.

This instance's name is "[owner]'s Cat", with
[owner] being the name of its owner.

>>> cat1 = Cat.cat_creator("Bryce")
>>> isinstance(cat1, Cat)
True
>>> cat1.owner
'Bryce'
>>> cat1.name
"Bryce's Cat"
>>> cat2 = Cat.cat_creator("Tyler")
>>> cat2.owner
'Tyler'
>>> cat2.name
"Tyler's Cat"
"""
name = owner + "'s Cat"
return cls(name, owner)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	OOP
	Q1: WWPD: Student OOP
	Q2: Email
	Q3: Keyboard
	Q4: Relay

	Class Methods
	Q5: Own A Cat

