

 

Q5: (Tutorial) Interpreters Review
Discuss the follow questions with your tutorial group - they will be helpful for your understanding of the Scheme
project! If you wish to take notes, we recommend you take notes on a separate document so it won't accidentally
get erased.

What are the four parts of an interpreter (Hint: what does REPL stand for)? What does each part do? What parts did
you work on implementing in the discussion?

What would be the output of the "Read" portion for the same code?

How does the evaluate stage work in Calculator? How do we know if an input into calc_eval is a call expression?

For the Calculator interpreter implemented in discussion, for the following executed code, what would be the input
into the "Read" portion of the interpreter?
scm> (cons '+ (cons 2 (cons 3 nil)))
(+ 2 3)

 

Q6: (Tutorial) Replicate
Write a function that takes an element x and a non-negative integer n, and returns a list with x repeated n times.

Tip: If you aren't sure where to start, try writing the corresponding recursive function for Linked Lists in Python first!

(define (replicate x n)
 'YOUR-CODE-HERE

)

;;; Tests
(replicate 5 3)
; expect (5 5 5)

 

(define (uncompress s)
'YOUR-CODE-HERE

)

;;; Tests
(uncompress '((a 1) (b 2) (c 3)))
; expect (a b b c c c)

(define (my-append a b)
(if (null? a)
b
(cons (car a) (my-append (cdr a) b))))

Q7: (Tutorial) Run Length Encoding
A run-length encoding is a method of compressing a sequence of letters. The list (a a a b a a a a) can be
compressed to ((a 3) (b 1) (a 4)), where the compressed version of the sequence keeps track of how many
letters appear consecutively.
Write a function that takes a compressed sequence and expands it into the original sequence.

Hint: You may want to use my-append and replicate.

scm> (my-append '(1 2 3) '(2 3 4))
(1 2 3 2 3 4)

 

Q8: (Tutorial) Map
Write a function that takes a procedure and applies it to every element in a given list.

(define (map fn lst)
'YOUR-CODE-HERE

)

;;; Tests
(map (lambda (x) (* x x)) '(1 2 3))
; expect (1 4 9)

Q10: (Tutorial) Tree Sum
Using the abstract data type from problem 9, write a function that sums up the entries of a tree, assuming that the
entries are all numbers.

Hint: you may want to use the map function you defined in problem 8, and also write a helper function for summing
up the entries of a list.
(define (tree-sum tree)
'YOUR-CODE-HERE

)

'YOUR-CODE-HERE

