Q3: (Tutorial) Inheritance Review: That's a Constructor, __init__? (1/2)

Let's say we want to create a class Monarch that inherits from another class, Butterfly. We've partially written
an __init method for Monarch. For each of the following options, state whether it would correctly complete the
method so that every instance of Monarch has all of the instance attributes of a Butterfly instance? You may
assume that a monarch butterfly has the default value of 2 wings.
class Butterfly():
def __init__ (self, wings=2):
self.wings = wings

class Monarch(Butterfly):
def init (self):

self.colors = ['orange', 'black', 'white'l]

1. super.__init__ ()

2. super().__init__ ()

3. Butterfly._ _init_ ()

4, Butterfly. init_ (self)

Q3: (Tutorial) Inheritance Review: That's a Constructor, __init__? (2/2)

Some butterflies like the Owl Butterfly have adaptations that allow them to mimic other animals with their wing
patterns. Let's write a class for these MimicButterflies. In addition to all of the instance variables of a

regular Butterfly instance, these should also have an instance variable mimic animal describing the name of
the animal they mimic. Fill in the blanks in the lines below to create this class.

class Butterfly():
def __init__ (self, wings=2):
self.wings = wings

class Monarch(Butterfly):
def __init_ (self):
super().__init__ ()
self.colors = ['orange', 'black', 'white'l

FILL THIS IN
class MimicButterfly() :

def init (self, mimic_animal):

.init()

= mimic_animal

https://en.wikipedia.org/wiki/Owl_butterfly

Q4: (Tutorial) Warmup: The Hy-rules of Linked Lists

In this question, we are given the following Linked List:

ganondorf = Link('zelda', Link('young link', Link('sheik', Link.empty)))

What expression would give us the value 'sheik' from this Linked List?

What is the value of ganondorf.rest.first?

Q5: (Tutorial) Multiply Lnks

Write a function that takes in a Python list of linked lists and multiplies them element-wise. It should return a new
linked list.

If not all of the Link objects are of equal length, return a linked list whose length is that of the shortest linked list
given. You may assume the Link objects are shallow linked lists, and that 1st of 1nks contains at least one
linked list.

def multiply_Tlnks(lst_of_1lnks):

>>> a = Link(2, Link(3, Link(5)))

>>> b = Link(6, Link(4, Link(2)))

>>> ¢ = Link(4, Link(1, Link(@, Link(2))))
>>> p = multiply_1lnks([a, b, c])

>>> p.first

48

>>> p.rest.first

12

>>> p.rest.rest.rest is Link.empty

True

Implementation Note: you might not need all lines in this skeleton code

for

if

For an extra challenge, try writing out an iterative approach as well!

Q6: (Tutorial) Flip Two

Write a recursive function £1ip two that takes as input a linked list s and mutates s so that every pair is flipped.

def flip_two(s):
>>> one_lnk = Link(1)
>>> flip_two(one_1lnk)
>>> one_lnk
Link(1)
>>> 1lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> flip_two(lnk)
>>> 1nk
Link(2, Link(1, Link(4, Link(3, Link(5)))))

"xx*x YOUR CODE HERE x*xx"

For an extra challenge, try writing out an iterative approach as well!

Q8: (Tutorial) Find Paths

Hint: This question is similar to £ind paths on Discussion 05.
Define the procedure £ind paths that, given a Tree t and an entry, returns a list of lists containing the nodes
along each path from the root of t to entry. You may return the paths in any order.

For instance, for the following tree tree ex, find paths should behave as specified in the function doctests.

def find_paths(t, entry):

>>> tree_ex = Tree(2, [Tree(7, [Tree(3), Tree(6, [Tree(5), Tree(11)]1)]1), Tree(1l, [Tree(5)])])
>>> find_paths(tree_ex, 5)
[f2z, 7, 6, 51, [2, 1, 511

>>> find_paths(tree_ex, 12)

[]

paths = []

if

for

