Q2: (Tutorial) Make Keeper

Write a function similar to keep ints like in Question 1 #, but now it takes in a number n and returns a function that has
one parameter cond. The returned function prints out numbers from 1 to n where calling cond on that number
returns True.

def make_keeper(n):

>>> def is_even(x):
Even numbers have remainder @ when divided by 2.

return x % 2 == 0
>>> make_keeper(5) (is_even)
2
4

"sxxkx YOUR CODE HERE skx"

Q5: (Tutorial) HOF Diagram Practice

Eg\ra_w _t'he environment diagram that results from executing the code below

def

def

def

f(x):
n=28
return x + 1

g(x):
n=29
def h():
return x + 1
return h

f(f, x):
return f(x + n)

f(g, n)
(lambda y: y())(f)

Global frame

l J I
l J I
l J I

e[] parene
l J | (@]
l J | (@]
[| | | (@]
Return value :}

l J | (o]
| | | | (o]
I | | | (o]
Return value :]

l J l
l | l
Return value :]

I | | | (o]
l | | (@]
Return value :]

[o][e]

Objects

@) L]

Q7: (Tutorial) Warm Up: Make Keeper Redux

In this question, we will explore the execution of a self-reference function, make keeper redux, based off Question
2, make_ keeper. The function make keeper redux is similar to make keeper, but now the returned function also
returns another function with the same behavior. Feel free to paste and modify your code for make keeper below.

def make_keeper_redux(n):
>>> def multiple_of_4(x):
return x % ==
>>> def ends_with_1(x):
return x % 10 == 1
>>> k = make_keeper_redux(11) (multiple_of_4)

>>> k = k(ends_with_1)
1

11

>>> K

<function do_keep>

Paste your code for make_keeper here!

(Hint: you only need to add one line to your make keeper solution. What is currently missing from make keeper redux?)

Q9: (Tutorial) Print N

Write a function print n that can take in an integer n and returns a repeatable print function that can
print the next n parameters. After the nth parameter, it just prints "done".

def print_n(n):

>>> f = print_n(2)
>>> f = f("hi")

hi

>>> f = f("hello")
hello

>>> f = f("bye")
done

>>> g = print_n(1)

>>> g("first") ("second") ("third")
first

done

done

<function inner_print>

def inner_print(x):

if

print("done")
else:
print(x)

return

return

