FINAL REVIEW PART 2: SCHEME AND REGEX

COMPUTER SCIENCE MENTORS

April 26 - 29, 2021

Examtool Practice Test

If you're looking for a practice test, CSM created one with problems from a combination
of previous 61A Finals and our own problem bank. Check it out here!

Exam Password: 03xquVYr19BzoHiVcUx-rEbIb9Sg8NwXrg4NfiWgu-4A

Here are the PDF solutions. We highly recommend that you attempt all the problems
before looking at the solutions.


https://exam.cs61a.org/csm61a-practice-test
https://drive.google.com/file/d/1UlyBBRlOiQVR8Ban-CvUFp0kylXBvghv/view?usp=sharing

COMPUTER SCIENCE MENTORS 12: FINAL REVIEW PART 2: SCHEME AND REGEX Page 2

Scheme Lists

1. The map function takes in a two-argument function and a list of elements, and applies
that function to each element in that list. We want to define our own version of the
map function EXCEPT instead of applying a function to a list of elements, we want to
pass in a single element and apply each function in a list of functions to that element.

Define a function reverse—-map, which takes in a list of functions, operators,and a
single argument, arg, and returns a list that results from applying all of the functions
in operators on arg. You may assume that all functions in operators will work
properly with the single input arg.
; doctests
scm> (define funcs (list (lambda (x) (- x 10)) (lambda (x) (=
x 2)) (lambda (x) (integer? x))))
funcs
scm> (reverse—-map funcs 2)
(-8 4 #t)
scm> (reverse-map funcs 16)
(6 32 #t)

(define (reverse-map operators args)

(1f ( )

CSM 61A Spring 2021: Ivan Penev and Joshua Baum, with

Jamie Ip, Kenneth Chi, Kevin Moy, Mathilde McKeever, Cyrus Bugwadia, Peter Zhang, and

Kunal Agarwal, Luke Liu, John So, Jemmy Zhou, Ruslana Yurtyn, Vivian Lu, Matt Au, Lily Yang, Mihira Patel, Jessica
Yu, Aidan Tong, Matthew Guo, Nikhita Anumukonda, Laryn Qi, Grace Yi, Jennifer Huang, Cindy Lin, James Fletcher,
Sean Sananikone, Abinaya Srikant, Uma Unni



COMPUTER SCIENCE MENTORS 12: FINAL REVIEW PART 2: SCHEME AND REGEX Page 3

2. Fill in backwards-sum such that it takes in a list of numbers 1st and returns a new
list with each element being the sum of itself and all elements to the right of it in 1st.

Sidebar: the word “sum” being bolded has no significance, it is an auto-formatting
issue.

; doctests
scm> (backwards-sum '(1 2 3 4))
(10 9 7 4)
scm> (backwards—-sum '(2 -1 3 7))
(11 9 10 7)

(define (backwards—-sum 1lst)

CSM 61A Spring 2021: Ivan Penev and Joshua Baum, with
Jamie Ip, Kenneth Chi, Kevin Moy, Mathilde McKeever, Cyrus Bugwadia, Peter Zhang, and
Kunal Agarwal, Luke Liu, John So, Jemmy Zhou, Ruslana Yurtyn, Vivian Lu, Matt Au, Lily Yang, Mihira Patel, Jessica

Yu, Aidan Tong, Matthew Guo, Nikhita Anumukonda, Laryn Qi, Grace Yi, Jennifer Huang, Cindy Lin, James Fletcher,
Sean Sananikone, Abinaya Srikant, Uma Unni



COMPUTER SCIENCE MENTORS 12: FINAL REVIEW PART 2: SCHEME AND REGEX Page 4

3. Define well-formed, which determines whether 1st is a well-formed list or not.
Assume that 1st only contains numbers and no nested lists.
; Doctests
scm> (well-formed ' ())
#t
scm> (well-formed '(1 2 3))
#t
; List doesn't end in nil
scm> (well-formed (cons 1 2))

#f

(define (well-formed 1lst)

CSM 61A Spring 2021: Ivan Penev and Joshua Baum, with

Jamie Ip, Kenneth Chi, Kevin Moy, Mathilde McKeever, Cyrus Bugwadia, Peter Zhang, and

Kunal Agarwal, Luke Liu, John So, Jemmy Zhou, Ruslana Yurtyn, Vivian Lu, Matt Au, Lily Yang, Mihira Patel, Jessica
Yu, Aidan Tong, Matthew Guo, Nikhita Anumukonda, Laryn Qi, Grace Yi, Jennifer Huang, Cindy Lin, James Fletcher,
Sean Sananikone, Abinaya Srikant, Uma Unni



COMPUTER SCIENCE MENTORS 12: FINAL REVIEW PART 2: SCHEME AND REGEX Page 5

Tail Recursion

4. Implement s1ice, which takesinaalist 1st, a starting index i, and an ending index
j, and returns a new list containing the elements of 1st from index i to j - 1.
;Doctests
scm> (slice '(0 1 2 3 4) 1 3)

(1 2)

scm> (slice '"(0O 1 2 3 4) 3 5)
(3 4)

scm> (slice '(0 1 2 3 4) 3 1)
()

(define (slice 1lst i Jj)

5. Now implement slice with the same specifications, but make you implementation tail
recurisve.
You may wish to use the built-in append function, which takes in two lists and returns
a new list containing the elements of the two lists concatenated together.
(define (slice 1lst i Jj)

CSM 61A Spring 2021: Ivan Penev and Joshua Baum, with

Jamie Ip, Kenneth Chi, Kevin Moy, Mathilde McKeever, Cyrus Bugwadia, Peter Zhang, and

Kunal Agarwal, Luke Liu, John So, Jemmy Zhou, Ruslana Yurtyn, Vivian Lu, Matt Au, Lily Yang, Mihira Patel, Jessica
Yu, Aidan Tong, Matthew Guo, Nikhita Anumukonda, Laryn Qi, Grace Yi, Jennifer Huang, Cindy Lin, James Fletcher,
Sean Sananikone, Abinaya Srikant, Uma Unni



COMPUTER SCIENCE MENTORS 12: FINAL REVIEW PART 2: SCHEME AND REGEX Page 6

Macros

6. Write a macro, and-odds, which takes in a list of expressions, exprs, and evaluates
to a true value if all of the even-indexed elements of exprs evaluate to true values. If
any of the even-indexed elements evaluate to false, and-odds should return false.

; doctests

scm> (and-odds ' ((= 10 10)))

#t

scm> (and-odds '((= 1 2)))

#f

scm> (and-odds ' (#f #t #t))

#f

scm> (and-odds '"((< 5 3) (=5 5)))

#f

scm> (and-odds '((> 3 2) (< 5 0) (=5 5)))
#t

scm> (and-odds '((< 1 5) (< 5 2) (< 35) (<5 3) (<4 5)))
#t

scm> (define a (list 1 #f 3))

a

scm> (and-odds a)

3

(define-macro (and-odds exprs)

T (if

CSM 61A Spring 2021: Ivan Penev and Joshua Baum, with

Jamie Ip, Kenneth Chi, Kevin Moy, Mathilde McKeever, Cyrus Bugwadia, Peter Zhang, and

Kunal Agarwal, Luke Liu, John So, Jemmy Zhou, Ruslana Yurtyn, Vivian Lu, Matt Au, Lily Yang, Mihira Patel, Jessica
Yu, Aidan Tong, Matthew Guo, Nikhita Anumukonda, Laryn Qi, Grace Yi, Jennifer Huang, Cindy Lin, James Fletcher,
Sean Sananikone, Abinaya Srikant, Uma Unni



COMPUTER SCIENCE MENTORS 12: FINAL REVIEW PART 2: SCHEME AND REGEX Page 7

7. Define a macro, eval-and-check that takes in three expressions and evaluates each
expression in order. If the last expression evaluates to a truth-y value, return the
symbol ok. Otherwise, return fail.

;Doctests

scm> (eval-and-check #f #f #t)

ok

scm> (eval-and-check (+ 2 3) (print 2) (> 2 3))

2

fail

scm> (eval-and-check (define x 1) (print x) (> x 0))
1

ok

(define-macro (eval-and-check exprl expr2 expr3)

CSM 61A Spring 2021: Ivan Penev and Joshua Baum, with

Jamie Ip, Kenneth Chi, Kevin Moy, Mathilde McKeever, Cyrus Bugwadia, Peter Zhang, and

Kunal Agarwal, Luke Liu, John So, Jemmy Zhou, Ruslana Yurtyn, Vivian Lu, Matt Au, Lily Yang, Mihira Patel, Jessica
Yu, Aidan Tong, Matthew Guo, Nikhita Anumukonda, Laryn Qi, Grace Yi, Jennifer Huang, Cindy Lin, James Fletcher,
Sean Sananikone, Abinaya Srikant, Uma Unni



COMPUTER SCIENCE MENTORS 12: FINAL REVIEW PART 2: SCHEME AND REGEX Page 8

8. Now expand eval-and-check to take in any number of expressions (as long as
there is at least one).

;Doctests
scm> (eval-and-check #f #f #f #f #t)

ok

scm> (eval-and-check (print 2) (> 2 3))

2

fail

(define-macro (eval-and-check exprl . args)

9. Write a macro, zero-cond that takes in a list of condition-value pairs where each pair
contains only numbers or arithmetic expressions that evaluate to numbers. It should
evaluate each condition, treating expressions that evaluate to 0 as false-y and then return
the value corresponding to the first truth-y value.

;Doctests
scm> (zero—cond
((0 '"wrong)

((-— 1 1) '"wrong)

((» 1 1) 'correct!)

(2 'wrong)))

correct!

(define—-macro (zero—-cond conditions)

CSM 61A Spring 2021: Ivan Penev and Joshua Baum, with
Jamie Ip, Kenneth Chi, Kevin Moy, Mathilde McKeever, Cyrus Bugwadia, Peter Zhang, and
Kunal Agarwal, Luke Liu, John So, Jemmy Zhou, Ruslana Yurtyn, Vivian Lu, Matt Au, Lily Yang, Mihira Patel, Jessica

Yu, Aidan Tong, Matthew Guo, Nikhita Anumukonda, Laryn Qi, Grace Yi, Jennifer Huang, Cindy Lin, James Fletcher,
Sean Sananikone, Abinaya Srikant, Uma Unni



COMPUTER SCIENCE MENTORS 12: FINAL REVIEW PART 2: SCHEME AND REGEX Page 9

Regex Practice

Here’s a Regex reference sheet courtesy of Datal00 Course Staff. Check it out here!

10. We are given a linear equation of the form max + b, and we want to extract the m and
b values. Remember that’.” and "+” are special meta-characters in Regex.

import re
def linear_ functions(eq_str):

Given the equation in the form of 'mx + b', returns a

tuple of m and b values.
>>> linear_functions ("1x+0")
(¢'1v, '0")]
>>> linear_functions ("100y+44")
[('100"', '44'")]
>>> linear_functions ("99.9z+23")
[('99.9', '23")]
>>> linear_functions ("55t+0.4")
[('55", '0.4")]
mmwn

return re.findall(r"____ U

eqg_str)

CSM 61A Spring 2021: Ivan Penev and Joshua Baum, with

Jamie Ip, Kenneth Chi, Kevin Moy, Mathilde McKeever, Cyrus Bugwadia, Peter Zhang, and
Kunal Agarwal, Luke Liu, John So, Jemmy Zhou, Ruslana Yurtyn, Vivian Lu, Matt Au, Lily Yang, Mihira Patel, Jessica
Yu, Aidan Tong, Matthew Guo, Nikhita Anumukonda, Laryn Qi, Grace Yi, Jennifer Huang, Cindy Lin, James Fletcher,

Sean Sananikone, Abinaya Srikant, Uma Unni


https://drive.google.com/file/d/1lhIy1fIJZKXeIZYGv4ltkFMwq0OxdKNn/view?usp=sharing

