
CS 61A Regular Expressions, BNF, SQL
Fall 2021 Discussion 12: November 17, 2021 Solutions

BNF
Backus-Naur Form (BNF) is a syntax for describing a context-free grammar. It was
invented for describing the syntax of programming languages, and is still commonly
used in documentation and language parsers. EBNF is a dialect of BNF which
contains some convenient shorthands.

An EBNF grammar contains symbols and a set of recursive production rules. In
61A, we are using the Python Lark library to write EBNF grammars, which has a
few specific rules for grammar writing.

There are two types of symbols: Non-terminal symbols can expand into non-
terminals (including themselves) or terminals. In the Python Lark library,
non-terminal symbols are always lowercase. Terminal symbols can be strings or
regular expressions. In Lark, terminals are always uppercase.

Consider these two production rules:

numbers: INTEGER | numbers "," INTEGER
INTEGER: /-?\d+/

The symbol numbers is a non-terminal with a recursive production rule. It cor-
responds to either an INTEGER terminal or to the numbers symbol (itself) plus a
comma plus an INTEGER terminal. The INTEGER terminal is defined using a regular
expression which matches any number of digits with an optional - sign in front.

This grammar can describe strings like:

10
10,-11
10,-11,12

And so on, with any number of integers in front.

A grammar should also specify a start symbol, which corresponds to the whole
expression being parsed (or the whole sentence, for a spoken language).

For the simple example of comma-separated numbers, the start symbol could just
be the numbers terminal itself:

?start: numbers
numbers: numbers "," INTEGER | INTEGER
INTEGER: /-?\d+/

https://en.wikipedia.org/wiki/Context-free_grammar

2 Regular Expressions, BNF, SQL

EBNF grammars can use these shorthand notations for specifying how many sym-
bols to match:

EBNF Notation Meaning Pure BNF Equivalent

item* Zero or more items items: | items item
item+ One or more items items: item | items item
[item] item? Optional item optitem: | item

Lark also includes a few handy features:

• You can specify tokens to complete ignore by using the ignore directive at the
bottom of a grammar. For example, %ignore /\s+/ ignores all whitespace
(tabs/spaces/new lines).

• You can import pre-defined terminals for common types of data to match.
For example, %import common.NUMBER imports a terminal that matches any
integer or decimal number.

Q1: lambda BNF

We’ve written a simple BNF grammar to handle lambda expressions. The body of
our lambda has to consist of a single expression, which can be a number, word, or
another lambda expression.

?start: lambda_expression
lambda_expression: "lambda " arguments ":" body
arguments: WORD ("," WORD)*
body: expression
?expression: value | lambda_expression
?value: WORD | NUMBER

%import common.WORD
%import common.NUMBER
%ignore /\s+/

For each of the given examples, draw the resulting tree created by this BNF.

lark> lambda x: 5

lambda_expression
arguments x
body 5

lark> lambda x, y: x

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Regular Expressions, BNF, SQL 3

lambda_expression
arguments
x
y

body x

lark> lambda x: lambda y: x

lambda_expression
arguments x
body
lambda_expression
arguments y
body x

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Regular Expressions, BNF, SQL

SQL
SQL is an example of a declarative programming language. Statements do not
describe computations directly, but instead describe the desired result of some com-
putation. It is the role of the query interpreter of the database system to plan and
perform a computational process to produce such a result.

For this discussion, you can test out your code at sql.cs61a.org. The records table
should already be loaded in.

Select Statements
We can use a SELECT statement to create tables. The following statement creates
a table with a single row, with columns named “first” and “last”:

sqlite> SELECT "Ben" AS first, "Bitdiddle" AS last;
Ben|Bitdiddle

Given two tables with the same number of columns, we can combine their rows into
a larger table with UNION:

sqlite> SELECT "Ben" AS first, "Bitdiddle" AS last UNION
...> SELECT "Louis", "Reasoner";
Ben|Bitdiddle
Louis|Reasoner

We can SELECT specific values from an existing table using a FROM clause. This
query creates a table with two columns, with a row for each row in the records
table:

sqlite> SELECT name, division FROM records;
Alyssa P Hacker|Computer
...
Robert Cratchet|Accounting

The special syntax SELECT * will select all columns from a table. It’s an easy way
to print the contents of a table.

sqlite> SELECT * FROM records;
Alyssa P Hacker|Computer|Programmer|40000|Ben Bitdiddle
...
Robert Cratchet|Accounting|Scrivener|18000|Eben Scrooge

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://sql.cs61a.org

Regular Expressions, BNF, SQL 5

We can choose which columns to show in the first part of the SELECT, we can filter
out rows using a WHERE clause, and sort the resulting rows with an ORDER BY
clause. In general the syntax is:

SELECT [columns] FROM [tables]
WHERE [condition] ORDER BY [criteria];

For instance, the following statement lists all information about employees with the
“Programmer” title.

sqlite> SELECT * FROM records WHERE title = "Programmer";
Alyssa P Hacker|Computer|Programmer|40000|Ben Bitdiddle
Cy D Fect|Computer|Programmer|35000|Ben Bitdiddle

The following statement lists the names and salaries of each employee under the
accounting division, sorted in descending order by their salaries.

sqlite> SELECT name, salary FROM records
...> WHERE division = "Accounting" ORDER BY salary desc;
Eben Scrooge|75000
Robert Cratchet|18000

Note that all valid SQL statements must be terminated by a semicolon (;). Addition-
ally, you can split up your statement over many lines and add as much whitespace
as you want, much like Scheme. But keep in mind that having consistent indenta-
tion and line breaking does make your code a lot more readable to others (and your
future self)!

Questions
Q2: SELECTs in BNF

Let’s write a BNF grammar that describes SELECT statements in SQL. Your gram-
mar should support the following:

• selecting one or more columns from a single table
• an optional WHERE clause
• any number of additional AND clauses if a WHERE clause is present
• the WHERE and AND clauses only need to support comparisons between col-

umn(s) and numbers

The SQLite documentation actually uses BNF via railroad diagrams,
which are a way of representing the grammar. Check out the diagram
for a complete SELECT statement on the SQLite site here.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.sqlite.org/lang_select.html

6 Regular Expressions, BNF, SQL

?start: select_statement
select_statement: "SELECT " columns "FROM" table ("WHERE" condition

("AND" condition)*)? ";"
columns: (WORD ",")* WORD
table: WORD
condition: expr COMPARATOR expr
?expr: WORD | NUMBER
COMPARATOR: "<" | ">" | "=" | ">=" | "<=" | "!="

%doctest
lark> SELECT name, age FROM cats
....> WHERE age > 3 AND lives > 5 AND tail = 1;
select_statement
columns
name
age

table cats
condition
age
>
3

condition
lives
>
5

condition
tail
=
1

%end
%import common.WORD
%import common.NUMBER
%ignore /\s+/

SQL Queries
For the following questions, you will be referring to the records table:

Name Division Title Salary Supervisor

Alyssa P Hacker Computer Programmer 40000 Ben Bitdiddle
… … … … …

Q3: Oliver Employees

Write a query that outputs the names of employees that Oliver Warbucks directly
supervises.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Regular Expressions, BNF, SQL 7

SELECT name FROM records WHERE supervisor = "Oliver Warbucks";

Q4: Self Supervisor

Write a query that outputs all information about employees that supervise them-
selves.

SELECT * FROM records WHERE name = supervisor;

Q5: Rich Employees

Write a query that outputs the names of all employees with salary greater than
50,000 in alphabetical order.

SELECT name FROM records WHERE salary > 50000 ORDER BY name;

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Regular Expressions, BNF, SQL

Regular Expressions
Q6: Email Domain Validator

Create a regular expression that makes sure a given string email is a valid email
address and that its domain name is in the provided list of domains.

An email address is valid if it contains letters, number, or underscores, followed by
an @ symbol, then a domain.

All domains will have a 3 letter extension following the period.

Hint: For this problem, you will have to make a regex pattern based on the inputs
domains. A for loop can help with that.

Extra: There is a particularly elegant solution that utilizes join and replace instead
of a for loop.

Note: The skeleton code is just a suggestion; feel free to use your own structure if
you prefer.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://python-reference.readthedocs.io/en/latest/docs/str/join.html
https://python-reference.readthedocs.io/en/latest/docs/str/replace.html

Regular Expressions, BNF, SQL 9

import re
def email_validator(email, domains):

"""
>>> email_validator("oski@berkeley.edu", ["berkeley.edu", "gmail
.com"])
True
>>> email_validator("oski@gmail.com", ["berkeley.edu", "gmail.
com"])
True
>>> email_validator("oski@berkeley.com", ["berkeley.edu", "gmail
.com"])
False
>>> email_validator("oski@berkeley.edu", ["yahoo.com"])
False
>>> email_validator("xX123_iii_OSKI_iii_123Xx@berkeley.edu", ["
berkeley.edu", "gmail.com"])
True
>>> email_validator("oski@oski@berkeley.edu", ["berkeley.edu", "
gmail.com"])
False
>>> email_validator("oski@berkeleysedu", ["berkeley.edu", "gmail
.com"])
False
"""
pattern = r"^\w+@("
for domain in domains:

if domain == domains[-1]:
pattern += domain[:-4] + r"\." + domain[-3:] + r")$"

else:
pattern += domain[:-4] + r"\." + domain[-3:] + "|"

return bool(re.search(pattern, email))
Alternate, elegant solution
domains_list = "|".join([domain.replace(".", "\.") for domain in
domains])
return bool(re.search(rf"^\w+@({domains_list})$", email))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	BNF
	Q1: lambda BNF

	SQL
	Select Statements

	Questions
	Q2: SELECTs in BNF
	SQL Queries
	Q3: Oliver Employees
	Q4: Self Supervisor
	Q5: Rich Employees

	Regular Expressions
	Q6: Email Domain Validator

