
CS 61A Scheme, Scheme Lists
Fall 2021 Discussion 10: November 3, 2021

Introduction
In the next part of the course, we will be working with the Scheme programming
language. In addition to learning how to write Scheme programs, we will eventually
write a Scheme interpreter in Project 4!

Scheme is a famous functional programming language from the 1970s. It is a di-
alect of Lisp (which stands for LISt Processing). The first observation most people
make is the unique syntax, which uses a prefix notation and (often many) nested
parentheses (see http://xkcd.com/297/). Scheme features first-class functions and
optimized tail-recursion, which were relatively new features at the time.

Primitives and Defining Variables
Scheme has a set of atomic primitive expressions. Atomic means that these expres-
sions cannot be divided up.

scm> 123
123
scm> #t
True
scm> #f
False

Unlike in Python, the only primitive in Scheme that is a false value is #f and its
equivalents, false and False. This means that 0 is not false.

In Scheme, we can use the define special form to bind values to symbols, which we
can then use as variables. When a symbol is defined this way, the define special
form returns the symbol.

• (define <variable name> <value>)

Evaluates <value> and binds the value to <variable name> in the current environ-
ment.

WWSD

scm> (define a 1)

scm> a

http://xkcd.com/297/

2 Scheme, Scheme Lists

scm> (define b a)

scm> b

scm> (define c 'a)

scm> c

Call Expressions
Call expressions apply a procedure to some arguments.

(<operator> <operand1> <operand2> ...)

Call expressions in Scheme work exactly like they do in Python. To evaluate them:

1. Evaluate the operator to get a procedure.
2. Evaluate each of the operands from left to right.
3. Apply the value of the operator to the evaluated operands.

For example, consider the call expression (+ 1 2). First, we evaluate the symbol +
to get the built-in addition procedure. Then we evaluate the two operands 1 and 2
to get their corresponding atomic values. Finally, we apply the addition procedure
to the values 1 and 2 to get the return value 3.

Operators may be symbols, such as + and *, or more complex expressions, as long
as they evaluate to procedure values.

Here is a reference for the Scheme Built-In Procedures.

scm> (- 1 1) ; 1 - 1
0
scm> (* (+ 1 2) (+ 1 2)) ; (1 + 2) * (1 + 2)
9

WWSD

What would Scheme display? As a reminder, the built-in quotient function per-
forms floor division.

scm> (define a (+ 1 2))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://cs61a.org/articles/scheme-builtins/

Scheme, Scheme Lists 3

scm> a

scm> (define b (- (+ (* 3 3) 2) 1))

scm> (+ a b)

scm> (= (modulo b a) (quotient 5 3))

Special Forms
Special form expressions contain a special form as the operator. Special form
expressions do not follow the same rules of evaluation as call expressions. Each
special form has its own rules of evaluation – that’s what makes them special!
Here’s the Scheme Specification to reference the special forms we will cover in this
class.

If Expression

An if expression looks like this:

(if <predicate> <if-true> [if-false])

<predicate> and <if-true> are required expressions and [if-false] is optional.

The rules for evaluation are as follows:

1. Evaluate <predicate>.
2. If <predicate> evaluates to a truth-y value, evaluate <if-true> and return

its value. Otherwise, evaluate [if-false] if provided and return its value.

if is a special form as not all of its operands will be evaluated. The value of the
first operand determines whether the second or the third operator is evaluated.

Important: Only #f is a false-y value in Scheme; everything else is
truth-y, including 0.

scm> (if (< 4 5) 1 2)
1
scm> (if #f (/ 1 0) 42)
42

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://cs61a.org/articles/scheme-spec/#special-forms-2

4 Scheme, Scheme Lists

Boolean operators

Like Python, Scheme has the boolean operators and, or, and not. and and or
are special forms because they are short-circuiting operators, while not is a builtin
procedure.

• and takes in any amount of operands and evaluates these operands from left
to right until one evaluates to a false-y value. It returns that first false-y value
or the value of the last expression if there are no false-y values.

• or also evaluates any number of operands from left to right until one evaluates
to a truth-y value. It returns that first truth-y value or the value of the last
expression if there are no truth-y values.

• not takes in a single operand, evaluates it, and returns its opposite truthiness
value.

scm> (and 25 32)
32
scm> (or 1 (/ 1 0)) ; Short-circuits
1
scm> (not (odd? 10))
#t

WWSD

What would Scheme display?

scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> ((if (< 4 3) + -) 4 100)

Defining Functions
All Scheme procedures are constructed as lambda procedures.

One way to create a procedure is to use the lambda special form.

(lambda (<param1> <param2> ...) <body>)

This expression creates a lambda function with the given parameters and body, but
does not evaluate the body. As in Python, the body is not evaluated until the
function is called and applied to some argument values. The fact that neither the
parameters nor the body is evaluated is what makes lambda a special form.

We can also assign the value of an expression to a name with a define special form:

1. (define (<name> <param> ...) <body> ...)
2. (define <name> (lambda (<param> ...) <body> ...))

These two expressions are equivalent; the first is a concise version of the second.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Scheme, Scheme Lists 5

scm> ; Bind lambda function to square
scm> (define square (lambda (x) (* x x)))
square
scm> (define (square x) (* x x)) ; Same as above
square
scm> square
(lambda (x) (* x x))
scm> (square 4)
16

Q1: Virahanka-Fibonacci

Write a function that returns the n-th Virahanka-Fibonacci number.

(define (vir-fib n)
'YOUR-CODE-HERE

)

(expect (vir-fib 10) 55)
(expect (vir-fib 1) 1)
You can use more space on the back if you want

scm> (vir-fib 0)
0
scm> (vir-fib 1)
1
scm> (vir-fib 10)
55

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Scheme, Scheme Lists

Pairs and Lists
All lists in Scheme are linked lists. Scheme lists are composed of two element pairs.
We define a list as being either

• the empty list, nil
• a pair whose second element is a list

As in Python, linked lists are recursive data structures. The base case is the empty
list.

We use the following procedures to construct and select from lists:

• (cons first rest) constructs a list with the given first element and rest of
the list. For now, if rest is not a pair or nil it will error.

• (car lst) gets the first item of the list
• (cdr lst) gets the rest of the list

To visualize Scheme lists, you can use the draw function in code.cs61a.org.

scm> nil
()
scm> (define lst (cons 1 (cons 2 (cons 3 nil))))
lst
scm> lst
(1 2 3)
scm> (car lst)
1
scm> (cdr lst)
(2 3)

Scheme lists are displayed in a similar way to the Link class we defined in Python.
Here is an example in 61A Code.

Two other ways of creating lists are using the built-in list procedure or the quote
special form. More info can be found on the Scheme Specification.

scm> (list 1 2 3)
(1 2 3)
scm> (quote (1 x 3))
(1 x 3)
scm> '(1 x 3) ; Equivalent to the previous quote expression
(1 x 3)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://code.cs61a.org/EarlySorryBottom
https://cs61a.org/articles/scheme-spec/

Scheme, Scheme Lists 7

=, eq?, equal?

• (= <a>) returns true if a equals b. Both must be numbers.
• (eq? <a>) returns true if a equals b and they are both numbers. For

two objects, eq? returns true if both refer to the same object in memory.
• (equal? <a>) returns true if a and b are equivalent. For two pairs, they

are equivalent if their cars are equivalent and their cdrs are equivalent.

scm> (define a '(1 2 3))
a
scm> (= a a)
Error
scm> (equal? a '(1 2 3))
#t
scm> (eq? a '(1 2 3))
#f

Q2: List Making

Let’s make some Scheme lists. We’ll define the same list with list, quote, and
cons.

The following list was visualized using the draw feature of code.cs61a.org.

First, use list:

(define with-list
(list

'YOUR-CODE-HERE

)
)
(draw with-list)
You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Scheme, Scheme Lists

Now use quote. What differences are there?

(define with-quote
'(

'YOUR-CODE-HERE

)

)
(draw with-quote)
You can use more space on the back if you want

Now try with cons. For convenience, we’ve defined a helpful-list and another-
helpful-list:

(define helpful-list
(cons 'a (cons 'b nil)))

(draw helpful-list)

(define another-helpful-list
(cons 'c (cons 'd (cons (cons 'e nil) nil))))

(draw another-helpful-list)

(define with-cons
(cons

'YOUR-CODE-HERE

)
)
(draw with-cons)
You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Scheme, Scheme Lists 9

Q3: List Concatenation

Write a function which takes two lists and concatenates them.

Notice that simply calling (cons a b) would not work because it will create a deep
list. Do not call the builtin procedure append, since it does the same thing as
list-concat should do.

(define (list-concat a b)
'YOUR-CODE-HERE

)

(expect (list-concat '(1 2 3) '(2 3 4)) (1 2 3 2 3 4))
(expect (list-concat '(3) '(2 1 0)) (3 2 1 0))
You can use more space on the back if you want

scm> (list-concat '(1 2 3) '(2 3 4))
(1 2 3 2 3 4)

Q4: Map

Write a function that takes a procedure and applies it to every element in a given
list.

(define (map-fn fn lst)
'YOUR-CODE-HERE

)

(map-fn (lambda (x) (* x x)) '(1 2 3))
; expect (1 4 9)
You can use more space on the back if you want

scm> (map-fn (lambda (x) (* x x)) '(1 2 3))
(1 4 9)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Scheme, Scheme Lists

Q5: Make Tree

Fill in the following to complete an tree data abstraction:

(define (make-tree label branches) (cons label branches))

(define (label tree)
'YOUR-CODE-HERE

)

(define (branches tree)
'YOUR-CODE-HERE

)

(make-tree 1 (list (make-tree 2 '()) (make-tree 3 '())))
; expect (1 (2) (3))
You can use more space on the back if you want

Q6: Tree Sum

Using the data abstraction above, write a function that sums up the entries of a
tree, assuming that the entries are all numbers.

Hint: You may want to use map with a helper function to sum list entries.

(define (tree-sum tree)
'YOUR-CODE-HERE

)

(define (sum lst)
'YOUR-CODE-HERE

)

(define t (make-tree 1 (list (make-tree 2 '()) (make-tree 3 '()))))
(expect (tree-sum t) 6)
You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Introduction
	Primitives and Defining Variables
	WWSD

	Call Expressions
	WWSD

	Special Forms
	WWSD

	Defining Functions
	Q1: Virahanka-Fibonacci

	Pairs and Lists
	Q2: List Making
	Q3: List Concatenation
	Q4: Map
	Q5: Make Tree
	Q6: Tree Sum

