
CS 61A Mutability, Iterators and Generators
Fall 2021 Discussion 6: October 6, 2021 Solutions

Mutability
Some objects in Python, such as lists and dictionaries, are mutable, meaning that
their contents or state can be changed. Other objects, such as numeric types,
tuples, and strings, are immutable, meaning they cannot be changed once they
are created.

Let’s imagine you order a mushroom and cheese pizza from La Val’s, and they
represent your order as a list:

>>> pizza = ['cheese', 'mushrooms']

With list mutation, they can update your order by mutate pizza directly rather
than having to create a new list:

>>> pizza.append('onions')
>>> pizza
['cheese', 'mushrooms', 'onions']

Aside from append, there are various other list mutation methods:

• append(el): Add el to the end of the list. Return None.
• extend(lst): Extend the list by concatenating it with lst. Return None.
• insert(i, el): Insert el at index i. This does not replace any existing

elements, but only adds the new element el. Return None.
• remove(el): Remove the first occurrence of el in list. Errors if el is not in

the list. Return None otherwise.
• pop(i): Remove and return the element at index i.

We can also use list indexing with an assignment statement to change an existing
element in a list. For example:

>>> pizza[1] = 'tomatoes'
>>> pizza
['cheese', 'tomatoes', 'onions']

2 Mutability, Iterators and Generators

Q1: WWPD: Mutability

What would Python display? In addition to giving the output, draw the box and
pointer diagrams for each list to the right.

>>> s1 = [1, 2, 3]
>>> s2 = s1
>>> s1 is s2

True

>>> s2.extend([5, 6])
>>> s1[4]

6

>>> s1.append([-1, 0, 1])
>>> s2[5]

[-1, 0, 1]

>>> s3 = s2[:]
>>> s3.insert(3, s2.pop(3))
>>> len(s1)

5

>>> s1[4] is s3[6]

True

>>> s3[s2[4][1]]

1

>>> s1[:3] is s2[:3]

False

>>> s1[:3] == s2[:3]

True

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators and Generators 3

>>> s1[4].append(2)
>>> s3[6][3]

2

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Mutability, Iterators and Generators

Q2: Add This Many

Write a function that takes in a valuex, a value el, and a list s, and adds el to the
end of s the number of times x occurs in s. Make sure to modify the original
list using list mutation techniques.

def add_this_many(x, el, s):
""" Adds el to the end of s the number of times x occurs in s.
>>> s = [1, 2, 4, 2, 1]
>>> add_this_many(1, 5, s)
>>> s
[1, 2, 4, 2, 1, 5, 5]
>>> add_this_many(2, 2, s)
>>> s
[1, 2, 4, 2, 1, 5, 5, 2, 2]
"""
count = 0
for element in s:

if element == x:
count += 1

while count > 0:
s.append(el)
count -= 1

Two alternate solutions involve iterating over the list indices and iterating over a
copy of the list:

def add_this_many_alt1(x, el, s):
for i in range(len(s)):

if s[i] == x:
s.append(el)

def add_this_many_alt2(x, el, s):
for element in list(s):

if element == x:
s.append(el)

Iterators
An iterable is an object where we can go through its elements one at a time. Specif-
ically, we define an iterable as any object where calling the built-in iter function
on it returns an iterator. An iterator is another type of object which can iterate
over an iterable by keeping track of which element is next in the iterable.

For example, a sequence of numbers is an iterable, since iter gives us an iterator
over the given sequence:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators and Generators 5

>>> lst = [1, 2, 3]
>>> lst_iter = iter(lst)
>>> lst_iter
<list_iterator object ...>

With an iterator, we can call next on it to get the next element in the iterator.
If calling next on an iterator raises a StopIteration exception, this signals to us
that the iterator has no more elements to go through. This will be explored in the
example below.

Calling iter on an iterable multiple times returns a new iterator each time with
distinct states (otherwise, you’d never be able to iterate through a iterable more
than once). You can also call iter on the iterator itself, which will just return the
same iterator without changing its state. However, note that you cannot call next
directly on an iterable.

For example, we can see what happens when we use iter and next with a list:

>>> lst = [1, 2, 3]
>>> next(lst) # Calling next on an iterable
TypeError: 'list' object is not an iterator
>>> list_iter = iter(lst) # Creates an iterator for the list
>>> next(list_iter) # Calling next on an iterator
1
>>> next(iter(list_iter)) # Calling iter on an iterator returns

itself
2
>>> for e in list_iter: # Exhausts remainder of list_iter
... print(e)
3
>>> next(list_iter) # No elements left!
StopIteration
>>> lst # Original iterable is unaffected
[1, 2, 3]

Q3: WWPD: Iterators

What would Python display?

>>> s = [[1, 2]]
>>> i = iter(s)
>>> j = iter(next(i))
>>> next(j)

1

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Mutability, Iterators and Generators

>>> s.append(3)
>>> next(i)

3

>>> next(j)

2

>>> next(i)

StopIteration

Generators
We can define custom iterators by writing a generator function, which returns a
special type of iterator called a generator.

A generator function has at least one yield statement and returns a generator
object when we call it, without evaluating the body of the generator function itself.

When we first call next on the returned generator, then we will begin evaluating the
body of the generator function until an element is yielded or the function otherwise
stops (such as if we return). The generator remembers where we stopped, and will
continue evaluating from that stopping point on the next time we call next.

As with other iterators, if there are no more elements to be generated, then calling
next on the generator will give us a StopIteration.

For example, here’s a generator function:

def countdown(n):
print("Beginning countdown!")
while n >= 0:

yield n
n -= 1

print("Blastoff!")

To create a new generator object, we can call the generator function. Each returned
generator object from a function call will separately keep track of where it is in terms
of evaluating the body of the function. Notice that calling iter on a generator object
doesn’t create a new bookmark, but simply returns the existing generator object!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators and Generators 7

>>> c1, c2 = countdown(2), countdown(2)
>>> c1 is iter(c1) # a generator is an iterator
True
>>> c1 is c2
False
>>> next(c1)
Beginning countdown!
2
>>> next(c2)
Beginning countdown!
2

In a generator function, we can also have a yield from statement, which will yield
each element from an iterator or iterable.

>>> def gen_list(lst):
... yield from lst
...
>>> g = gen_list([1, 2])
>>> next(g)
1
>>> next(g)
2
>>> next(g)
StopIteration

Q4: Filter-Iter

Implement a generator function called filter_iter(iterable, fn) that only
yields elements of iterable for which fn returns True.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Mutability, Iterators and Generators

def filter_iter(iterable, fn):
"""
>>> is_even = lambda x: x % 2 == 0
>>> list(filter_iter(range(5), is_even)) # a list of the values
yielded from the call to filter_iter
[0, 2, 4]
>>> all_odd = (2*y-1 for y in range(5))
>>> list(filter_iter(all_odd, is_even))
[]
>>> naturals = (n for n in range(1, 100))
>>> s = filter_iter(naturals, is_even)
>>> next(s)
2
>>> next(s)
4
"""
for elem in iterable:

if fn(elem):
yield elem

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators and Generators 9

Q5: Merge

Write a generator function merge that takes in two infinite generators a and b that
are in increasing order without duplicates and returns a generator that has all the
elements of both generators, in increasing order, without duplicates.

def merge(a, b):
"""
>>> def sequence(start, step):
... while True:
... yield start
... start += step
>>> a = sequence(2, 3) # 2, 5, 8, 11, 14, ...
>>> b = sequence(3, 2) # 3, 5, 7, 9, 11, 13, 15, ...
>>> result = merge(a, b) # 2, 3, 5, 7, 8, 9, 11, 13, 14, 15
>>> [next(result) for _ in range(10)]
[2, 3, 5, 7, 8, 9, 11, 13, 14, 15]
"""
first_a, first_b = next(a), next(b)
while True:

if first_a == first_b:
yield first_a
first_a, first_b = next(a), next(b)

elif first_a < first_b:
yield first_a
first_a = next(a)

else:
yield first_b
first_b = next(b)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Mutability, Iterators and Generators

Q6: Primes Generator

Write a function primes_gen that takes a single argument n and yields all prime
numbers less than or equal to n in decreasing order. Assume n >= 1. You may use
the is_prime function included below, which we implemented in Discussion 3.

Optional Challenge: Now rewrite the generator so that it also prints the primes in
ascending order.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
def helper(i):

if i > (n ** 0.5): # Could replace with i == n
return True

elif n % i == 0:
return False

return helper(i + 1)
return helper(2)

def primes_gen(n):
"""Generates primes in decreasing order.
>>> pg = primes_gen(7)
>>> list(pg)
[7, 5, 3, 2]
"""
if n == 1:

return
if is_prime(n):

yield n
yield from primes_gen(n-1)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators and Generators 11

Q7: (Optional) Mystery Reverse Environment Diagram

Fill in the lines below so that the variables in the global frame are bound to the
values below. Note that the image does not contain a full environment diagram.
You may only use brackets, colons, p and q in your answer.

Hint: If you get stuck, feel free to try out different combinations in PythonTutor!

envdiagram

def mystery(p, q):
p[1].extend(q)
q.append(p[1:])

p = [2, 3]
q = [4, [p]]
mystery(q, p)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

http://tutor.cs61a.org/

	Mutability
	Q1: WWPD: Mutability
	Q2: Add This Many

	Iterators
	Q3: WWPD: Iterators

	Generators
	Q4: Filter-Iter
	Q5: Merge
	Q6: Primes Generator
	Q7: (Optional) Mystery Reverse Environment Diagram

