
CS61C
UC Berkeley

Teaching Professor
Dan Garcia

UC Berkeley
Professor

Bora Nikolić

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikolić

Number Representation

Number Representation (2)

Garcia, Nikolić

▪ Real world is analog!
▪ To import analog

information, we must do
two things
� Sample

■ E.g., for a CD,
every 44,100ths of a
second, we ask a music
signal
how loud it is.

� Quantize
■ For every one of these

samples, we figure out
where, on a 16-bit (65,536
tic-mark) “yardstick”, it lies.

Data input: Analog → Digital

Number Representation (3)

Garcia, Nikolić

Digital data not necessarily born Analog…

hof.povray.org

Number Representation (4)

Garcia, Nikolić

▪ Characters?
� 26 letters ⇒ 5 bits (25 = 32)
� upper/lower case + punctuation

 ⇒ 7 bits (in 8) (“ASCII”)
� standard code to cover all the world’s

languages ⇒ 8,16,32 bits (“Unicode”)
www.unicode.com

▪ Logical values?
� 0 → False, 1 → True

▪ colors ? Ex:
▪ locations / addresses? commands?
▪ MEMORIZE: N bits ⇔ at most 2N things

BIG IDEA: Bits can represent anything!!

Red (00) Green (01) Blue (11)

�

Binary
Decimal

Hex

Number Representation (6)

Garcia, Nikolić

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:
3271 = 327110 =

(3x103) + (2x102) + (7x101) + (1x100)

Base 10 (Ten) #s, Decimals

Number Representation (7)

Garcia, Nikolić

Digits: 0, 1 (binary digits � bits)

Example: “1101” in binary? (“0b1101”)
11012 = (1x23) + (1x22) + (0x21) + (1x20)
 = 8 + 4 + 0 + 1
 = 13

Base 2 (Two) #s, Binary (to Decimal)

Number Representation (8)

Garcia, Nikolić

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 10,11,12,13,14,15

Example: “A5” in Hexadecimal?
0xA5 = A516 = (10x161) + (5x160)

 = 160 + 5

 = 165

Base 16 (Sixteen) #s, Hexadecimal (to
Decimal)

Number Representation (9)

Garcia, Nikolić

Every Base is Base 10…

Number Representation (10)

Garcia, Nikolić

▪ E.g., 13 to binary?
▪ Start with the columns

▪ Left to right, is (column) ≤ number n?
� If yes, put how many of that column fit in n,

subtract col * that many from n, keep going.
� If not, put 0 and keep going. (and Stop at 0)

Convert from Decimal to Binary

23=8 22=4 21=2 20=11
35
1
0

1 1 0 1

Number Representation (11)

Garcia, Nikolić

▪ E.g., 165 to hexadecimal?
▪ Start with the columns

▪ Left to right, is (column) ≤ number n?
� If yes, put how many of that column fit in n,

subtract col * that many from n, keep going.
� If not, put 0 and keep going. (and Stop at 0)

Convert from Decimal to Hexadecimal

163=4096 162=256 161=16 160=116
55
0 0 0 (10) A 5

Number Representation (12)

Garcia, Nikolić

▪ Binary � Hex? Easy!
� Always left-pad with 0s to make

full 4-bit values, then look up!
� E.g., 0b11110 to Hex?

■ 0b11110 � 0b00011110
■ Then look up: 0x1E

▪ Hex � Binary? Easy!
� Just look up, drop leading 0s

■ 0x1E�0b00011110�0b11110

Convert Binary �� Hexadecimal
D H B
00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Number Representation (13)

Garcia, Nikolić

▪ 4 Bits
� 1 “Nibble”
� 1 Hex Digit = 16 things

▪ 8 Bits
� 1 “Byte”
� 2 Hex Digits = 256 things
� Color is usually

0-255 Red,
0-255 Green,
0-255 Blue.
#D0367F=

Decimal vs Hexadecimal vs Binary
D H B
00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Number Representation (14)

Garcia, Nikolić

▪ Decimal: great for humans, especially when doing
arithmetic

▪ Hex: if human looking at long strings of binary
numbers, its much easier to convert to hex and see
4 bits/symbol
� Terrible for arithmetic on paper

▪ Binary: what computers use;
you will learn how computers do +, -, *, /
� To a computer, numbers always binary
� Regardless of how number is written:
� 32ten == 3210 == 0x20 == 1000002 == 0b100000
� Use subscripts “ten”, “hex”, “two” in book, slides when might

be confusing

Which base do we use?

Number Representation (15)

Garcia, Nikolić

Output Decimal: 1234
Hex: 4d2
Octal: 2322
Literals (not supported by all compilers):
0x4d2 = 1234 (hex)
0b10011010010 = 1234 (binary)
02322 = 1234 (octal, prefix 0 - zero)

The computer knows it, too…

�

Number
Representatio

ns

Number Representation (17)

Garcia, Nikolić

▪What to do with number representations?
� Add them
� Subtract them
�Multiply them
� Divide them
� Compare them

▪ Example: 10 + 7 = 17
�…so simple to add in binary that we can build

circuits to do it!
� Subtraction just as you would in decimal
� Comparison: How do you tell if X > Y ?

What to do with representations of
numbers?

 1 0 1 0
+ 0 1 1 1

Number Representation (18)

Garcia, Nikolić

▪ Binary bit patterns are simply representatives of
numbers. Abstraction!
� Strictly speaking they are called “numerals”.

▪ Numerals really have an ∞ number of digits
� with almost all being same (00…0 or 11…1) except for a few of

the rightmost digits
� Just don’t normally show leading digits

▪ If result of add (or -, *, /) cannot be represented by
these rightmost HW bits, we say overflow occurred

What if too big?

00000 0000
1

0001
0

111
11

111
10unsigne

d

…

Number Representation (19)

Garcia, Nikolić

▪ So far, unsigned numbers

▪ Obvious solution: define leftmost bit to be sign!
� 0 � + 1 � – …and rest of bits are numerical value

▪ Representation called Sign and Magnitude

How to Represent Negative Numbers?

00000 00001 0111
1

...

10000100011111
1

...

00000 00001 011
11

... 10000 111
11

...
Binary
odomete
r

Binary
odometer

(C’s unsigned int, C18’s uintN_t)

META: Ain’t no free
lunch

Number Representation (20)

Garcia, Nikolić

▪ Arithmetic circuit complicated
� Special steps depending on if signs are the same or

not

▪ Also, two zeros
� 0x00000000 = +0ten
� 0x80000000 = –0ten
� What would two 0s mean for programming?

▪ Also, incrementing “binary odometer”, sometimes
increases values, and sometimes decreases!

▪ Therefore sign and magnitude used only in
signal processors

Shortcomings of Sign and Magnitude?

Number Representation (21)

Garcia, Nikolić

▪ Example: 710 = 001112 –710 = 110002

▪ Called One’s Complement
▪ Note: positive numbers have leading 0s, negative

numbers have leadings 1s.

▪ What is -00000 ? Answer: 11111
▪ How many positive numbers in N bits?
▪ How many negative numbers?

Another try: complement the bits

00000 00001 011
11

...

111
11

111
10

10000 ...

Binary
odometer

Number Representation (22)

Garcia, Nikolić

▪ Arithmetic still somewhat complicated
▪ Still two zeros
� 0x00000000 = +0ten
� 0xFFFFFFFF = -0ten

▪ Although used for a while on some
computer products, one’s complement
was eventually abandoned because
another solution was better.

Shortcomings of One’s Complement?

�

Two’s
Complement

& Bias
Encoding

Number Representation (24)

Garcia, Nikolić

▪ Problem is the negative mappings “overlap” with
the positive ones (the two 0s). Want to shift the
negative mappings left by one.
� Solution! For negative numbers, complement, then

add 1 to the result

▪ As with sign and magnitude, & one’s compl.
leading 0s � positive, leading 1s � negative
� 000000...xxx is ≥ 0, 111111...xxx is < 0
� except 1…1111 is -1, not -0 (as in sign & mag.)

▪ This representation is Two’s Complement
� This makes the hardware simple!

Standard Negative # Representation

(C’s int, C18’s intN_t, aka a “signed
integer”)

Number Representation (25)

Garcia, Nikolić

▪ Can represent positive and negative
numbers in terms of the bit value times a
power of 2:
d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20

▪ Example: 1101two in a nibble?
= 1x-(23) + 1x22 + 0x21 + 1x20

= -23 + 22 + 0 + 20

= -8 + 4 + 0 + 1
= -8 + 5
= -3ten

Two’s Complement Formula

Example: -3 to +3 to -3
(again, in a nibble):
x : 1101twox’ : 0010two+1 : 0011two()’: 1100two+1 : 1101two

Number Representation (26)

Garcia, Nikolić

▪ 2N-1 non-negatives
▪ 2N-1 negatives
▪ one zero
▪ how many positives?

Two’s Complement Number “line”: N = 5
00000 00001

00010
1111
11111

0

10000 0111
1

10001

0 1 2
-1

-2

-15 -16 15

.

.

.

.

.

.

-3
1110
1

-4
1110
0

00000 00001 011
11

...

111
11

111
10

...

Binary
odometer

1000
0

Number Representation (27)

Garcia, Nikolić

Bias Encoding: N = 5 (bias = -15)

10000 011
11

1000
1

-1
5

-1
4 -1

3

1
6

1
5

2 1 0

.

.

.

.

.

.

1
41

3

00001
011
11...

111
11

111
10

10000 ...
Binary
odometer

0111
0

-
1

0111
0

Think of an electrical
signal from 0v to

31v. How to center
on 0?

▪ # = unsigned
 + bias

▪ Bias for N bits
chosen as –(2N-1-1)

▪ one zero
▪ how many positives?

00000

00000 00001
00010

1111
11111

01110
11110

0

Number Representation (28)

Garcia, Nikolić

▪ We represent “things” in computers as particular bit
patterns: N bits ⇒ 2N things

▪ These 5 integer encodings have different benefits;
1s complement and sign/mag have most problems.

▪ unsigned (C18’s uintN_t) :

▪ Two’s complement (C99’s intN_t) universal,
learn!

▪ Overflow: numbers ∞; computers finite, errors!

And in summary...

00000 00001 011
11

...

111
11

111
10

10000 ...

META: We often make design
decisions to make HW simple

META: Ain’t no free lunch

00000 00001 011
11

... 10000 111
11

...

