
CSM 61B So Many Trees
Fall 2020 Mentoring 8: October 12 - October 16, 2020

1 Binary Trees
public class BinaryTree<T> {

protected Node root;

protected class Node {

public T value;

public Node left;

public Node right;

}

}

1

2

5 9

7

3

4

1.1 Define a procedure, height, which takes in a Node and outputs the height of

the tree. Recall that the height of a leaf node is 0.

private int height(Node node) {

}

What is the runtime of height?

1.2 Define a procedure, isBalanced, which takes a Node and outputs whether or

not the tree is balanced. A tree is balanced if the left and right branches

differ in height by at most one and are themselves balanced.

private boolean isBalanced(Node node) {

}

What is the runtime of isBalanced?



2 So Many Trees

2 Traversals
Level-Order Traversals Nodes are visited top-to-bottom, left-to-right.

Depth-First Traversals Visit deep nodes before shallow ones.

1

2

5 9

7

3

4

2.1 Give the ordering for each depth-first traversal of the tree.

(a) Pre-order

(b) In-order

(c) Post-order

2.2 Give the level-order traversal of the tree.

2.3 public void treeTraversal(Fringe<Node> fringe) {

fringe.add(root);

while (!fringe.isEmpty()) {

Node node = fringe.remove();

System.out.print(node.value);

if (node.left != null) {

fringe.add(node.left);

}

if (node.right != null) {

fringe.add(node.right);

}

}

}

1

2

5 9

7

3

4

What would Java display?

(a) tree.traversal(new Queue<Node>());

(b) tree.traversal(new Stack<Node>());



So Many Trees 3

3 Binary Search Trees
3.1 Implement fromSortedArray for binary search trees. Given a sorted int[]

array, efficiently construct a balanced binary search tree containing every

element of the array.

public class BinarySearchTree<T extends Comparable<T>> {

protected Node root;

protected class Node {

public T value;

public Node left;

public Node right;

}

public static BinarySearchTree<Integer> fromSortedArray(int[] values) {

BinarySearchTree<Integer> bst = new BinarySearchTree<>();

bst.root = bst.fromSortedArray(values, 0, values.length - 1);

return bst;

}

private Node fromSortedArray(int[] values, int lower, int upper) {



4 So Many Trees

4 2-3 Forever

8

6

3 7

14

10 15 16

4.1 Draw what the 2-3 tree would look like after inserting 18, 12, and 13.

4.2 Now, convert the resulting 2-3 tree to a left-leaning red-black tree.


	Binary Trees
	Traversals
	Binary Search Trees
	2-3 Forever

