
CSM 61B Special Topics
Fall 2020 Mentoring 14: November 23, 2020

1 Asymptotics
1.1 Give a tight asymptotic bound for mystery.

void mystery(int N) {

for (int i = 1; i <= N * N; i *= 2) {

for (int j = 0; j < i; j += 1) {

System.out.println("moo");

}

}

}

1.2 Give a tight asymptotic runtime bound for mysterySearch as a function of

N , the size of the array, in the best case, worst case, and overall. Assume

the array is sorted.

public static boolean mysterySearch(int[] a, int value) {

if (Math.random() < 0.5) {

return linearSearch(a, value, 0);

} else {

return binarySearch(a, value, 0, a.length);

}

}



2 Special Topics

2 T,F,G,V,E
2.1 State if the following statements are True or False, and justify. For all graphs,

assume that edge weights are positive and distinct, unless otherwise stated.

(a) If a graph G has a unique MST, it must have unique edge weights.

(b) Adding some positive constant k to every edge weight does not change

the minimum spanning tree.

(c) Doubling every edge weight does not change the minimum spanning

tree.

(d) Let (S, V − S) be a specific cut of the graph. If an edge e is not the

lightest edge across this cut, it cannot be a part of any MST.



Special Topics 3

3 Redundant Connections
3.1 For any connected graph with N vertices and N edges, there is at least 1

edge whose removal will keep the graph connected (graph would become a

tree).

Given a graph represented with an edge set, design an algorithm that would

find the K redundant edges of minimum weight. If there are not K redundant

edges, return all redundant edges.

Hint: Consider how Kruskal’s Algorithm checks for a cycle.

This problem is adapted from Leetcode: https://leetcode.com/problems/redundant-

connection/solution/



4 Special Topics

4 Threads
4.1 For most of the programming assignments in CS 61B, we would write some

code in Java, compile it with the javac command, then execute it with

the java command. To truly understand threads, let’s dive deeper into the

compilation and execution stages.

The Java compiler is invoked by the javac command and turns human-

written Java code into an executable file written in Java bytecode. The exe-

cutable is the sample.class file that results from running javac sample.java

in the command line.

This executable is a Java program. When we later run this executable (with

java sample.class), our operating system creates a new process to run the

program. By definition, a program is the result of compiling code and a

process is a program currently in execution.

A process that executes a Java program consists of multiple threads. A

thread is an independent execution sequence of code. If you have taken CS

61A, one way to think about it is that each thread has its own environment

diagram. Another way to think about it is that each thread executes its own

chunk of code.

One of the reasons why Java is considered a “high-level” programming lan-

guage is because each of these threads (within a running Java program) has

its own specialized task. For instance, one thread executes the code that

we have written (i.e. the main() function), another thread frees up unused

memory (i.e. garbage collection), another thread may update the display,

etc.

Threads within the same process share the same memory. This

is extremely useful in the age of parallel computing since it allows us to

take advantage of multi-core processors. However, there lies danger in the

concurrent access of shared memory (i.e. race conditions). With great power

comes great responsibility, and CS 61C and CS 162 will teach you methods

to write code that is thread-safe.

4.2 Let’s explore how we can write multi-threaded Java programs. Due to

COVID-19, CSM would like to start a mask donation and distribution pro-

gram for the needy. Here is the single-threaded version:



Special Topics 5

public class MaskDonationDrive {

public static int mask_count = 0;

public static int getCount() { return mask_count; }

public static void changeCount(int m) { mask_count += m; }

public static void main(String[] args) {

while (true) {

Scanner scanner = new Scanner(System.in);

System.out.println("How many masks would you like to donate?");

// Suspends execution until user specifies an integer at the command-line.

int donated_masks = scanner.nextInt();

System.out.println("Thank you for donating " + donated_masks + " masks!");

MaskDonationDrive.changeCount(donated_masks);

int mask_count = MaskDonationDrive.getCount();

if (mask_count > 0) {

System.out.println("Donated " + mask_count + " masks to the needy!");

MaskDonationDrive.changeCount(-1 * mask_count);

}

}

}

}

Fill in the skeleton code below for the multi-threaded version of the program.

One thread will constantly receive donations and update the mask count.

The other thread will distribute donations to the needy every 5 seconds.

public class MaskDonationDrive {

public static int mask_count = 0;

public static int getCount() { return mask_count; }

public static void changeCount(int m) { mask_count += m; }

public static void main(String[] args) {

Thread donator = new Thread(new Donator());

Thread distributor = new Thread(new Distributor());

_____________________________________________________;

_____________________________________________________;

}



6 Special Topics

}

public class Donator extends MaskDonationDrive implements Runnable {

public void run() {

Scanner scanner = new Scanner(System.in);

while (true) {

System.out.println("How many masks would you like to donate?");

_____________________________________________________;

_____________________________________________________;

_____________________________________________________;

_____________________________________________________;

}

}

}

public class Distributor extends MaskDonationDrive implements Runnable {

public void run() {

while (true) {

Thread.sleep(5000); // Suspends execution of the thread for 5 seconds.

_____________________________________________________;

_____________________________________________________;

_____________________________________________________;

_____________________________________________________;

}

}

}

}


	Asymptotics
	T,F,G,V,E
	Redundant Connections
	Threads

