
CSM 61B Graphs Sorting
Fall 2020 Mentoring 11: November 2, 2020

1 Networking
1.1 Consider the telephone network from last week. Construct a minimum span-

ning tree by running Prim’s Algorithm from node A.

B

A C

D

F

E

G

4
1

6

5
2

5

4

6

8

5

1

7

B

A C

D

F

E

G

4
1

2

4

6
1

Meta:

Intro: The cut property is introduced in the general statement for this ques-

tion. Make sure to have a simple example to use as a visual when explaining

it to students.

1.3: Your board work for how to run through Prim’s should be very simi-

lar to how you ran through Djikstra’s algorithm in the previous worksheet.

Only add edges to your MST as you pop off the Fringe (PQ). Additionarlly,

after running through the problem, explain how at a high level, for every

edge added, we just added the shortest edge not in the MST into the MST.

Use the cut property to explain this.

1.2 Run the quicksort algorithm. Assume we pick the middle element as the



2 Graphs Sorting

pivot; if there is no exact middle, pick the element to the right of the middle.

{ 1, 3, 8, 2, 6, 4, 5, 9 }

{ 1, 3, 2, 4, 5 }, { 6 }, { 8, 9 }

{ 1 }, { 2 }, { 3, 4, 5 }, { 6 }, { 8 }, { 9 }

{ 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 8 }, { 9 }

2 Sorting Overview
So far, we’ve learned a few different types of basic sorting algorithms. While

sorting might seem like a simple idea, there are many real-world applications

of sorting, and several different algorithms that we can use depending on the

situation.

In the table below, fill out the best and worst-case runtimes for each of the

sorting algorithms provided.

Algorithm Best-case Worst-case

Selection Sort Θ(N2) Θ(N2)

Insertion Sort Θ(N) Θ(N2)

Merge Sort Θ(N logN) Θ(N logN)

Heapsort Θ(N) Θ(N logN)

Quicksort Θ(N logN) Θ(N2)

.

In selection sort, we loop through the array to find the smallest

element. Next, we swap the element at index-0 with the smallest

element. Next, we repeat this procedure, but only looking at the

array starting at index-1.

Selection Sort • Runtime, Best, Worst Case: Since it takes O(N) time

to loop through the array, and we loop through the array N times,

this algorithm has a runtime of Θ(N2). Note that even if the

array is already sorted, we need to iterate through it to find the

minimum, and then iterate through it again, and again, N times.

• Stability: Consider an array { 3A, 2, 3B, 1 }, where the 3s have

been labeled to differentiate between them. The algorithm will

find 1 to be the smallest, and will swap it with 3A, pushing 3A

after 3B, making it not stable. However, it is also possible to make

it stable if we implement Selection Sort in a different way, which



Graphs Sorting 3

involves creating a new array instead of swapping the minimum

elements.

Insertion Sort This is the way an adult would normally sort a pack of

cards. Iterating through the array, swapping each element left-wards.

• Best Case: Given a sorted array, { 1, 2, 3, 4 }, this algorithm

would iterate through the array just once, and do 0 swaps, since

all elements are already as left-wards as they can be.

• Worst Case: Given a fully unsorted array, { 4, 3, 2, 1 }, this

algorithm would first swap (3, 4), then to move 2 left-wards, it

needs to do 2 swaps. Finally to move 1 left-wards, it needs to do

3 swaps. This is of the ordering of O(n2) swaps.

• Stability: Consider an array { 3A, 2, 3B, 1 }. We would get

the following steps: { 2, 3A, 3B, 1 }, { 1, 3, 3A, 3B, }. In

general, this algorithm is stable, because given a 3A, 3B, we would

never swap them with each other.

Merge Sort Given an array, divide it into two equal halves, and call merge-

sort recursively on each half. Take the recursive leap of faith and

assume that each half is now sorted. Merge the two sorted halves.

Merging takes a single iteration through both arrays, and takes O(N)

time. The base case is if the input list is just 1 element long, in which

case, we return the list itself.

• Best case, Worst Case, Runtime: Since the algorithm divides the

array and recurses down, this takes Θ(N logN) time, no matter

what.

• Stability: Merge sort is made stable by being careful during the

merging step of the algorithm. If deciding between 2 elements

that are the same, one in the left half and one in the right half,

pick the one from the left half first.

Heap Sort Place all elements into a heap. Remove elements one by one

from the heap, and place them in an array.

• Recall: Creating a heap of N elements takes N logN time, be-

cause we have to bubble-up elements. Removing an element from

a heap takes logN time, also because of bubbling and sinking.

• Best Case: Say that all the elements in the input array are equal.

In this case, creating the heap only takes O(N) time, since there is

no bubbling-down to be done. Also, removing from the heap takes

constant time for the same reason. Since we remove N elements,



4 Graphs Sorting

and creating the heap takes O(N) time, the overall runtime is

O(N).

• Worst Case: Any general array would require creating the heap

with bubbling which itself takes N logN time.

• Runtime: HeapSort is not stable. Consider two elements(3a and

3b) that are considered equal. Based on the implementation, we

pop the max element from the heap and add it to the end. This

naturally puts 3a after 3b in the array after the two pops.

For example, say the original array is already in heap structure:

{3(a),3(b),2,1}. After the first pop of the heap and add it to

the end, it will look like: {3(b),1,2,3(a)}. And the end result

would be {1,2,3(b),3(a)}.

Quicksort Based on some pivot-picking strategy, pick a pivot. Divide the

array up into 3 groups: elements smaller than the pivot, larger than

the pivot and equal to the pivot. Recursively sort the first and second

group.

• Runtime: Analyzed in detail in the next question.

• Stability: QuickSort is generally not implemented as a stable algo-

rithm, assuming we are using Tony Hoare’s in-place partitioning

implementation. It is not stable because the algorithm swaps non-

adjacent elements. However, if we use an extra space of O(N),

we can implement a stable QuickSort.

2.1 Give a best and worst case input for insertion sort.

Best case is a completely sorted array with 0 inversions while the worst case

is a reverse-sorted array with Θ(N2) inversions. Recall that the runtime for

insertion sort is given by Θ(N + K) where K is the number of inversions.

2.2 Do you expect selection or insertion sort to run more quickly on a reverse

list?

Asymptotically, both algorithms operate run in Θ(N2) in this scenario where

N is the length of the reversed list.

Selection sort might be better since it performs only Θ(N) swaps as opposed

to Θ(N2) swaps in insertion sort’s case.

2.3 In Heapsort do we use a min-heap or max-heap? Why?

We use a max-heap because then we can fill in the array of sorted elements

from the back to the front in the same array we use to represent our heap.



Graphs Sorting 5

2.4 Sort the following array using Heap Sort. [3, 2, 1, 5, 6, 8, 7]

Heapify the array (may be easier to visualize with a tree structure)

[3, 2, 1, 5, 6, 8, 7]

[3, 6, 1, 5, 2, 8, 7]

[3, 6, 8, 5, 2, 1, 7]

[8, 6, 3, 5, 2, 1, 7]

[8, 6, 7, 5, 2, 1, 3]

Then delete the largest element and place it at the back of the array. Do this

until the array is sorted. [1, 2, 3, 5, 6, 7, 8] Meta: Walkthrough heapification

of the array when you go over solutions. No need to justify why/when we

sink and swim nodes. Students should be comfortable with this already.

Redirect students to the previous part when they answered why we use a

max heap, and emphasize that we can do everything within one array.

2.5 Run the quicksort algorithm. Assume we pick the middle element as the

pivot; if there is no exact middle, pick the element to the right of the middle.

{ 1, 3, 8, 2, 6, 4, 5, 9 }

{ 1, 3, 2, 4, 5 }, { 6 }, { 8, 9 }

{ 1 }, { 2 }, { 3, 4, 5 }, { 6 }, { 8 }, { 9 }

{ 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 8 }, { 9 }



6 Graphs Sorting

3 Stability
Stability is a property of some sorting algorithms. Stability essentially means

that if we have two elements that are equal, then their relative ordering in

the sorted list is the same as the ordering in the unsorted list. For instance,

let’s say that we had an array of integers.

{ 1, 2, 1, 3, 1, 2, 4 }

Since we have multiple 1 and 2s, let’s label these.

{ 1A, 2A, 1B, 3, 1C, 2B, 4 }

A stable sort would result in the final list being

{ 1A, 1B, 1C, 2A, 2B, 3, 4 }

Why is this desirable? Say that we have an Excel spreadsheet where we are

recording the names of people who log in to CSM Scheduler. The first column

contains the timestamps, and the second column contains their username.

The timestamps are already ordered in increasing order. If we wanted to sort

the username, so that we could group the list to see when each username

logs in, we would want that the timestamps maintain their relative order.

This is precisely what a stable sort ensures.

3.1 Why does Java’s built-in Array.sort method use quicksort for int, long,

char, or other primitive arrays, but merge sort for all Object arrays?

Fast, in-place solutions for quicksort are unstable, meaning that, for any

two equivalent keys, their final order in the output is not guaranteed to be

the same. Merge sort has good asymtotic behavior without sacrificing on

stability.



Graphs Sorting 7

4 *In’sort’ Meme Here*
4.1 Each column below gives the contents of a list at some step during sorting.

Match each column with its corresponding algorithm.

· Merge sort · Quicksort · Heap sort · LSD radix sort · MSD radix sort

For quicksort, choose the topmost element as the pivot. Use the recursive

(top-down) implementation of merge sort.

Start A B C D E Sorted

1 4873 1876 1874 1626 9573 2212 1626

2 1874 1874 1626 1874 7121 8917 1874

3 8917 2212 1876 1876 9132 7121 1876

4 1626 1626 1897 4873 6973 1626 1897

5 4982 3492 2212 4982 4982 9132 2212

6 9132 1897 3492 8917 8917 6152 3492

7 9573 4873 4873 9132 6152 4873 4873

8 1876 9573 4982 9573 1876 9573 4982

9 6973 6973 6973 1897 1626 6973 6152

10 1897 9132 6152 3492 1897 1874 6973

11 9587 9587 7121 6973 1874 1876 7121

12 3492 4982 8917 9587 3492 9877 8917

13 9877 9877 9132 2212 4873 4982 9132

14 2212 8917 9573 6152 2212 9587 9573

15 6152 6152 9587 7121 9587 3492 9587

16 7121 7121 9877 9877 9877 1897 9877

From left to right: unsorted list, quicksort, MSD radix sort, merge sort, heap

sort, LSD radix sort, completely sorted.

MSD Look at the left-most digits. They should be sorted. Mark this

immediately as MSD.

LSD One of the digits should be sorted. Start by looking at the right most

digit of the remaining sorts. Then check the second from right digit

of the remaining sorts and so on. As soon as you find one in which at



8 Graphs Sorting

least something is sorted, mark that as LSD.

Heap Max-oriented heap so check that the bottom is in sorted order and

that the top element is the next max element.

Merge Realize that the first pass of merge sort fixes items in groups of 2.

Identify the passes and look for sorted runs.

Quick Run quicksort using the pivot strategy outlined above. Look for

partitions and check that 4873 is in its correct final position.

5 Sorting Out My Head!
5.1 Web developers use many different sorts for the different types of lists that

they might want to sort. For each of these, provide the best sorting algorithm

amongst the following: Mergesort, Quicksort (with Hoare Partitioning), In-

sertion Sort, LSD Sort. Also, state the worst-case runtime.

(a) A list of N packets received by a server over time. Each packet has the

timestamp at which the sender sent it. However, some packets may be

dropped or arrive out-of-order due to the faulty network. Sort this list

by that timestamp (sent time).

Since we expect the list to be largely sorted by time already, with a few

packets out of place, we should use insertion sort. Worst case runtime

is O(N2).

(b) A list of N websites. Each website has the number of total visitors.

Sort this list by visitor count.

Quicksort, since it’s generally pretty fast for sorting what is effectively a

random list of numbers. Worst case runtime is O(N2). Could also argue

for LSD sort since there might be some limit k on the total number of

visitors, but less preferable.

(c) After sorting by visitor count, we now want to sort by webpage file size.

If websites have the same file size, they should be ordered by visitor

count.

Mergesort, since we want to sort stably. Worst case runtime is

O(N logN).

(d) A list of 20 names. Sort in alphabetical order.

Insertion sort, since it has the least overhead and is fastest for small

lists. Worst case runtime is O(1), since 20 is a constant, and we assume

that all names are shorter than some fixed constant as well.


	Networking
	Sorting Overview
	Stability
	*In'sort' Meme Here*
	Sorting Out My Head!

