
CSM 61B Graph Algorithms
Fall 2020 Mentoring 10: October 24-30, 2020

1 Searches
1.1 For the graph below, write the order in which vertices are visited using the

specified algorithm starting from A. Break ties by alphabetical order. Notice

that we have now introduced edge weights to the graph.

C G

F

D

B

E

H

A

9

1

2

4 2

821

(a) DFS

A− C −D −B − E − F −G−H

(b) BFS

A− C −G−D −H − F −B − E

(c) Dijkstra’s

A−G− C −D −H −B − E − F



2 Graph Algorithms

2 Shortest Paths
2.1 Find the path from the start, S, to the goal, G, when running each of the

following algorithms.

The heuristic, h, estimates the distance from each node to the goal.

E h = 1

S
h = 6

A
h = 5

B
h = 6

D
h = 2

G
h = 0

C
h = 7

1

1

1

3

8 1

2

1

(a) Which path does Dijkstra’s return?

S −A−D −G

From the starting node, choose the path that has the least cost, go to

that node, and repeat until we reach the goal node. We choose the

lowest total cost.

We keep a priority-queue fringe that keeps track of paths. At each step,

we remove the shortest path from the fringe and add its children to the

fringe, trying all paths in increasing cost order until we reach G.

(b) Which path does A* search return?

A* search is an algorithm that combines the total distance from the

start with the heuristic to optimize the search procedure.

S −A−D −G

At each node, we choose the next node that has the lowest sum of the

path cost and h(·) value. This is essentially uniform cost search and

greedy search combined.

For A* to work, heuristics must be admissible and consistent.

• Admissible heuristics underestimate the true distance to the goal.

• Consistent heuristics require that the difference in heuristic val-

ues between two nodes cannot be greater than the true distance

between the two.

(c) What is the runtime of Dijkstra’s? A*? What is the space requirement



Graph Algorithms 3

for both?

We assume a binary heap Priority Queue. The largest the PQ can ever

get is size V since there are V vertices, and we never add vertices twice.

(We update using decrementKey instead.)

In the worst case, we do the following in Dijkstra’s:

• Insert every vertex into the PQ (V vertexes, O(log V ) time)

• Remove every vertex from the PQ (V vertexes, O(log V ) time)

• Update every vertex in the PQ (E edges, O(log V ) time)

Hence, Dijkstra’s has runtime O(V log V +V log V +E log V ) = O(E log V )

since E > V .

A* has the same runtime as Dijkstra’s in the worst case. We can see

this by constructing a very poor heuristic that returns 0 for all ver-

tices! We can see that this heuristic is trivially admissible (distance to

the goal is at least 0, so it must be admisible) and trivially consistent

(the difference is always 0, which is not greater than the true distance

between any two nodes). Then, the behaviour of A* on the graph is

exactly like Dijkstra’s.

However, given a good heuristic, A* can have a better average runtime,

which is why we often prefer it.

The space requirement for the graph is Θ(V +E) assuming an adjacency

list, and the space for the priority queue is Θ(V );



4 Graph Algorithms

3 True and False
3.1 State if the following statements are True or False, and justify. For all graphs,

assume that edge weights are positive and distinct, unless otherwise stated.

(a) Adding some positive constant k to every edge weight does not change

the shortest path tree from vertex S.

False. A counterexample can be thought of as follows: take a triangular

graph with 3 vertices A, B, and C and 3 edges: A-B with weight 1, B-C

with weight 2, and A-C with weight 5. We would like to start at A

and end at C. The original shortest path from A –¿ C involves passing

through B, but after adding a constant of 3, the shortest path is now

directly taking the edge from A to C.

(b) Doubling every edge weight does not change the shortest path tree.

True. Doubling the weight of every edge, the equivalent of multiplying

by 2, applies the exact same transformation to every edge. This means

the relationship between the edges remains constant the same edges will

be selected and the final cost of the shortest path will be doubled.

Following from the example above if we have a graph with edge A→ B

(w = 1), B→ C (w = 2), and A→C(w =5) the shortest path will be A

→ B → C. However when we double each edge weight we have A→ B

(w = 2), B→ C (w = 4), and A→C(w =10) and run disjkstras again

from A → C our shortest path will be A → B → C with a cost of 8

compared to A → C at a cost of 10. Multiplying our edges by values

ensures that they maintain the same ratio and the shortest path will

not change.

(c) If the weight of each edge is decreased by 1, then the resulting shortest

path in any graph from u to v is unchanged.

False.

The effect of adding/subtracting a constant to/from each edge depends

on the number of edges in a path. Subtracting 1 from every edge makes

paths with more edges shorter. Subtracting from an edge can also make

it negative.

(d) If an edge e is the lightest edge connected to vertex S, it must be a part

of the shortest path tree from vertex S.

True.

Starting from vertex S, you will always choose the lightest edge con-

nected to vertex S.



Graph Algorithms 5

(e) Consider a graph G, where every edge is nonnegative, except the edges

adjacent to vertex s. Dijkstra’s usually fails on graphs with negative

edge weights, however if we run Dijkstra’s starting from s, we will get

the correct shortest paths tree.

True.

Dijkstra’s fails if incorporating a negative edge not yet seen decreases

the shortest path. In the case, all negative edges have been seen and

added to the fringe. That means adding more edges to any forming

path can only increase the total distance (since all other edge weights

are nonnegative.


	Searches
	Shortest Paths
	True and False

