
EFFICIENCY, LINKED LISTS, AND MIDTERM
REVIEW

COMPUTER SCIENCE MENTORS

October 26, 2020 - October 29, 2020

1 Efficiency

An order of growth (OOG) characterizes the runtime efficiency of a program as its input
becomes extremely large. Common runtimes, in increasing order of time, are: constant,
logarithmic, linear, quadratic, and exponential.

Examples:

Constant time means that no matter the size of the input, the runtime of your program is
consistent. In the function f below, no matter what you pass in for n, the runtime is the
same.

def f(n):
return 1 + 2

A common example of a linear OOG involves a single for/while loop. In the example
below, as n gets larger, the amount of time to run the function grows proportionally.

def f(n):
while n > 0:

print(n)
n -= 1

An example of a quadratic runtime involves nested for loops. If you increment the value
of n by only 1, an additional n amount of work is being done, since the inner for loop will
run one more time. This means that the runtime is proportional to n2.

def f(n):
for i in range(n):

1

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 2
for j in range(n):

print(i*j)

1. What is the order of growth for foo?
(a) def foo(n):

for i in range(n):
print('hello')

(b) What’s the order of growth of foo if we change range(n):

i. To range(n/2)?

ii. To range(n**2 + 5)?

iii. To range(10000000)?

2. What is the order of growth for belgian_waffle?

def belgian_waffle(n):
total = 0
while n > 0:

total += 1
n = n // 2

return total

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 3

2 Linked Lists

Linked lists consists of a series of links which have two attributes: first and rest.
First contains some sort of value that is usually what you want to end up storing in
the list (these can be integers, strings, lists etc.). Rest, on the other hand, needs to be a
pointer to another link or Link.empty, which is just an empty linked list represented
traditionally by an empty tuple (but it does not have to be so you should never assume
that it is represented by an empty tuple otherwise you may break an abstraction barrier!).

Because each link contains another link or Link.empty, linked lists lend themselves to
recursion (just like trees). Consider the following example, in which we double every
value in linked list. We mutate the current link and then recursively double the rest.

def double_values(link):
if link is not Link.empty:

link.first *= 2 # we mutate the value inside of the link
double_val(link.rest) # we mutate the values in the rest

of the linked list
if the link is empty then do nothing

However, unlike with trees, we can also solve many Linked List questions using iter-
ation with a while loop as well. Take the following example where we have written
double_values using a while loop instead of using recursion:

def double_values_iter(link):
while link is not Link.empty:

link.first *= 2
link = link.rest # Note that this does not mutate

the original linked list;
it changes what link the variable
link is pointing to

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 4

For each of the following problems, assume linked lists are defined as follows:

class Link:
empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest is not Link.empty:

rest_repr = ', ' + repr(self.rest)
else:

rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'

def __str__(self):
string = '<'
while self.rest is not Link.empty:

string += str(self.first) + ' '
self = self.rest

return string + str(self.first) + '>'

To check if a Link is empty, compare it against the class attribute Link.empty:

if link is Link.empty:
print('This linked list is empty!')

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 5

1. What will Python output? Draw box-and-pointer diagrams to help determine this.
>>> a = Link(1, Link(2, Link(3)))
>>> a.first

>>> a.first = 5
>>> a.first

>>> a.rest.first

>>> a.rest.rest.rest.rest.first

>>> a.rest.rest.rest = a
>>> a.rest.rest.rest.rest.first

>>> repr(Link(1, Link(2, Link(3, Link.empty))))

>>> Link(1, Link(2, Link(3, Link.empty)))

>>> str(Link(1, Link(2, Link(3))))

>>> print(Link(Link(1), Link(2, Link(3))))

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 6

2. Write a function skip, which takes in a Link and returns a new Link with every
other element skipped.
def skip(lst):

"""
>>> a = Link(1, Link(2, Link(3, Link(4))))
>>> a
Link(1, Link(2, Link(3, Link(4))))
>>> b = skip(a)
>>> b
Link(1, Link(3))
>>> a
Link(1, Link(2, Link(3, Link(4)))) # Original is unchanged
"""
if ___:

__

elif ___:

__

__

3. Now write function skip by mutating the original list, instead of returning a new list.
Do NOT call the Link constructor.
def skip(lst):

"""
>>> a = Link(1, Link(2, Link(3, Link(4))))
>>> skip(a)
>>> a
Link(1, Link(3))
"""

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 7

4. (Optional) Write has_cycle which takes in a Link and returns True if and only if
there is a cycle in the Link.
def has_cycle(s):

"""
>>> has_cycle(Link.empty)
False
>>> a = Link(1, Link(2, Link(3)))
>>> has_cycle(a)
False
>>> a.rest.rest.rest = a
>>> has_cycle(a)
True
"""

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 8

3 Midterm Review

1. Draw the box-and-pointer diagram.

>>> violet = [7, 77, 17]
>>> violet.append([violet.pop(1)])

>>> dash = violet * 2
>>> jack = dash[3:5]
>>> jackjack = jack.extend(jack)

>>> helen = list(violet)
>>> helen += [jackjack]
>>> helen[2].append(violet)

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 9

2. Implement subsets, which takes in a list of values and an integer n and returns all
subsets of the list of size exactly n in any order. You may not need to use all the lines
provided.
def subsets(lst, n):

"""
>>> three_subsets = subsets(list(range(5)), 3)
>>> for subset in sorted(three_subsets):
... print(subset)
[0, 1, 2]
[0, 1, 3]
[0, 1, 4]
[0, 2, 3]
[0, 2, 4]
[0, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]
"""
if n == 0:

if _______________________________:

__

__

return _______________________________________

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 10
3. Write a generator function num_elems that takes in a possibly nested list of numbers
lst and yields the number of elements in each nested list before finally yielding the
total number of elements (including the elements of nested lists) in lst. For a nested
list, yield the size of the inner list before the outer, and if you have multiple nested
lists, yield their sizes from left to right.
def num_elems(lst):

"""
>>> list(num_elems([3, 3, 2, 1]))
[4]
>>> list(num_elems([1, 3, 5, [1, [3, 5, [5, 7]]]]))
[2, 4, 5, 8]
"""

count = _______________

for ___________________________:

if ________________________:

for _________________________________:

yield ___________________________

else:

yield ___________________________

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 11
4. Define delete path duplicates, which takes in t, a tree with non-negative labels.

If there are any duplicate labels on any path from root to leaf, the function should
mutate the label of the occurrences deeper in the tree (i.e. farther from the root) to be
the value -1.
def delete_path_duplicates(t):

"""
>>> t = Tree(1, [Tree(2, [Tree(1), Tree(1)])])
>>> delete_path_duplicates(t)
>>> t
Tree(1, [Tree(2, [Tree(-1), Tree(-1)])])
>>> t2 = Tree(1, [Tree(2), Tree(2, [Tree(2, [Tree(1, Tree

(5))])])])
>>> delete_path_duplicates(t2)
>>> t2
Tree(1, [Tree(2), Tree(2, [Tree(-1, [Tree(-1, [Tree(5)])])

])])
"""
def helper(_______________, _______________):

if ________________________________:

else:

for _______ in ____________________:

__

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

COMPUTER SCIENCE MENTORS 8: EFFICIENCY, LINKED LISTS, AND MIDTERM REVIEW Page 12

5. Write a function that returns true only if there exists a path from root to leaf that
contains at least n instances of elem in a tree t.
def contains_n(elem, n, t):

"""
>>> t1 = Tree(1, [Tree(1, [Tree(2)])])
>>> contains_n(1, 2, t1)
True
>>> contains_n(2, 2, t1)
False
>>> contains_n(2, 1, t1)
True
>>> t2 = Tree(1, [Tree(2), Tree(1, [Tree(1), Tree(2)])])
>>> contains_n(1, 3, t2)
True
>>> contains_n(2, 2, t2) # Not on a path
False
"""
if n == 0:

return True

elif ___:

return _____________________________________

elif ___:

return _____________________________________

else:

return _____________________________________

CSM 61A Fall 2020: Jason Chang and Jade Singh, with
Catherine Cang, Alina Trinh, Ethan Chiu, Jamie Ip, Kenneth Chi, and
Aidan Tong, Aman Shah, Bridget Cheng, Cindy Lin, Ethan Yeh, Ivan Penev, Ivy Li, James Fletcher, Jemmy Zhou,
Jennifer Huang, Jessica Yu, Joshua Baum, Kevin Moy, Kunal Agarwal, Lauren Meier, Matthew Guo, Mihira Patel,
Nikhita Anumukonda, Owen Gong, Richard Roggenkemper, Sean Sananikone, Uma Unni

